# Triangle Problems

Triangle problems with detailed solutions.

 Problem 1: The right triangle shown below has an area of 25. Find its hypotenuse. Solution to Problem 1: Since the x coordinates of points A and B are equal, segment AB is parallel to the y axis. Since BC is perpendicular to AB then BC is parallel to the x axis and therefore y, the y coordinate of point C is equal to 3. We now need to find the x coordinate x of point C using the area as follows area = 25 = (1/2) d(A,B) * d(B,C) d(A,B) = 5 d(B,C) = |x - 2| We now substitute d(A,B) and d(B,C) in the area formula above to obtain. 25 = (1/2) (5) |x - 2| We solve the above as follows |x - 2| = 10 x = 12 and x = - 8 We select x = 12 since point C is to the left of point B and therefore its x coordinate is greater than 2. We have the coordinates of point A and C and we can find the hypotenuse using the distance formula. hypotenuse = d(A,C) = sqrt[ (12 - 2) 2 + (3 - 8) 2 ] = sqrt(125) = 5 sqrt(5) Problem 2: Triangle ABC shown below is inscribed inside a square of side 20 cm. Find the area of the triangle Solution to Problem 2: The area is given by area of triangle = (1/2) base * height = (1/2)(20)(20) = 200 cm 2 Problem 3: Find the area of an equilateral triangle that has sides equal to 10 cm. Solution to Problem 3: Let A,B and C be the vertices of the equilateral triangle and M the midpoint of segment BC. Since the triangle is equilateral, AMC is a right triangle. Let us find h the height of the triangle using Pythagorean theorem. h 2 + 5 2 = 10 2 Solve the above equation for h. h = 5 sqrt(3) cm We now find the area using the formula. area = (1/2)* base * height = (1/2)(10)(5 sqrt(3)) = 25 sqrt(3) cm 2 = 43.3 cm 2 Problem 4: An isosceles triangle has angle A 30 degrees greater than angle B. Find all angles of the triangle. Solution to Problem 4: An isosceles triangle has two angles equal in size. In this problem A is greater than B therefore angles B and C are equal in size. Since angle A is 30 greater than angle B then A = B + 30 o. The sum of all angles in a triangle is equal to 180 o. (B+30) + B + B = 180 Solve the above equation for B. B = 50 o The sizes of the three angles are A = B + 30 = 80 o C = B = 50 o Problem 5: Triangle ABC, shown below, has an area of 15 mm 2. Side AC has a length of 6 mm and side AB has a length of 8 mm and angle BAC is obtuse. Find angle BAC to the and find length of side BC. Solution to Problem 5: Let the size of angle BAC = t. One of the many formulas for the area triangle is. area = 15 = (1/2) (AC)(AB) sin(t) Solve for sin(t) to obtain. sin(t) = 30 / (8*6) = 0.625 Solve for t above and take the solution that gives t obtuse t = Pi - arcsin(0.625) Convert t to degrees to obtain t (approximately) = 141.3 o We now use the cosine rule to calculate the length of side BC BC 2 = AB 2 + AC 2 - 2(AB)(AC)cos(t) = 64 + 36 - 2(8)(6)cos(141.3 o) BC = 13.23 mm. More references to triangles and geometry. Parallel Lines and Angles Problems Triangles Solve Right Triangle Problems Cosine Law Problems Geometry Tutorials, Problems and Interactive Applets.