# Definition of the Derivative of a Function

The definition of the derivative in calculus, as the limit of the difference quotient, is explored interactively using an applet.

The function to be explored has the form f(x) = a sin (b x + c) + d where a, b, c and d are parameters that can be changed. A secant through two points P and Q (on the graph of function f) is made to approach what is called the tangent line, at point
P

, to the graph of f.

Your browser is completely ignoring the <APPLET> tag!

#### TUTORIAL

1 - click on the button above "click here to start" and MAXIMIZE the window obtained.

2 - We start with two points \$P\$ and \$Q\$ on the graph of function f(x)= sin(x) (a = 1, b = 1, c = 0 and d = 0). Click on the button to make h (the difference in the x-coordinates of P and Q) smaller and notice how the secant through P and Q approaches what we call a tangent line to the graph of f. An important behavior to observe is also the convergence of the slope of the secant PQ to a finite value and that is the slope of the tangent line at x
0.

3 - Use the slider to change the coordinate of P and repeat the above experiment. Each time note the geometrical behavior of the secant and the convergence of its slope to a finite value which is called the derivative at that point.

4 - Use the sliders to change a, b, c and d. Each time note the geometrical behavior of the secant and the convergence of its slope to a finite value which is called the derivative at that point.

More references on derivatives and differentiation.