If R(x) is not equal to zero, the above equation is said to be inhomogeneous.

If R(x) = 0, the above equation becomes

d^{2}y / dx^{2} + P(x) dy / dx + Q(x) y = 0

and is called second order linear homogeneous differential equation.

Theorem

If y1(x) and y2(x) are two linearly independent solutions of the homogeneous differential equation d^{2}y / dx^{2} + P(x) dy / dx + Q(x) y = 0, then the general solution of the above equation may be written as

y(x) = A y1(x) + B y2(x)

where A and B are constants.

NOTE: Functions y1(x) and y2(x) are linearly independent if one is not a multiple of the other.

Second Order Differential Equations With Constant Coefficients

Homogeneous second order differential equations with constant coefficients have the form

d^{2}y / dx^{2} + b dy / dx + c y = 0

where b and c are constants.

Because of the presence of the first and second derivatives in the above equation, solutions of the form y = e^{kx} are appropriate for the above equation.

If y = e^{kx}, then dy / dx = k e^{kx} and d^{2}y / dx^{2} = k^{2} e^{kx}.

Substitute y, dy/dx and d^{2}y / dx^{2} into the differential equation to obtain