Additional Info

Share

Logarithmic Differentiation

The method of logarithmic differentiation , calculus, uses the properties of logarithmic functions to differentiate complicated functions and functions where the usual formulas of Differentiation do not apply. Several examples with detailed solutions are presented.

Example 1: Use the method of taking logarithms to find the derivative y ', if y is given by

y = x sin x

Solution to Example 1

  • We first note that there is no formula that can be used to differentiate directly this function. The first derivative may be calculated by first taking the natural logarithm of both sides of y = x sin x.

    ln y = ln [ x sin x ]

  • Use logarithm properties to rewrite the above equation as follows

    ln y = sin x ln x

  • We now differentiate both sides with respect to x, using the chain rule on the left side and the product rule formula for differentiation on the right side.

    y ' / y = cos x ln x + sin x (1/x)

  • Multiply both sides by y to obtain

    y ' = [ cos x ln x + (1/x) sin x ] y

    y ' = [ cos x ln x + (1/x) sin x ] x sin x

Example 2: Find the derivative y ' of function y defined by

y = x e (-x 2)

Solution to Example 2

  • We take the logarithms of both sides

    ln y = ln x + ln e (-x 2)

  • Simplify the term ln e (-x 2)

    ln y = ln x - x 2

  • Differentiate both sides with respect to x.

    y ' / y = 1 / x + 2 x

  • Multiply all terms by y

    y ' = [ 1 / x + 2 x ] y

    y ' = [ 1 / x + 2 x ] x e (-x 2)

    y ' = [ 1 + 2 x 2 ] e (-x 2)

Example 3: Find the derivative y ' of function y given by

y = 3 x 2 e -x

Solution to Example 3

  • We take the logarithms of both sides

    ln y = ln 3 + ln x 2 + ln e -x

  • Simplify the term ln e -x

    ln y = ln 3 + 2 ln x - x

  • Differentiate both sides with respect to x.

    y ' / y = 0 + 2 / x - 1

  • Multiply all terms by y

    y ' = [ 2 / x - 1 ] y

    y ' = [ 2 / x - 1 ] 3 x 2 e -x

    y ' = [ 6 x - 3 x 2 ] e -x

    y ' = 3 x [ 2 - x ] e -x

    NOTE: As an exercise, use the usual formula of differentiation to differentiate the above function and compare results.

Example 4: Find the derivative y ' of function y given by

y = (1 - x) 2 (x + 1) 4

Solution to Example 4

  • Take the logarithms of both sides and expand expressions obtained

    ln y = 2 ln (1 - x) + 4 ln (x + 1)

  • Differentiate both sides with respect to x.

    y ' / y = - 2 / (1 - x) + 4 / (x + 1)

  • Multiply all terms by y

    y ' = [ - 2 / (1 - x) + 4 / (x + 1) ] y

    y ' = [ - 2 / (1 - x) + 4 / (x + 1) ] (1 - x) 2 (x + 1) 4

    y ' = - 2 (1 - x)(x + 1) 4 + 4 (x + 1) 3(1 - x) 2

    y ' = 2 (1 - x)(x + 1) 3 (3x - 1)

    NOTE: Use the usual formula of differentiation to differentiate the above function and compare results.

Example 5: Find the derivative y' of function y defined by

y = tan x / e x

Solution to Example 5

  • Take the logarithms of both sides

    ln y = ln (tan x) - ln e x

  • Simplify ln e x.

    ln y = ln (tan x) - x

  • Differentiate both sides with respect to x

    y ' / y = sec x / tan x - 1

  • Multiply all terms by y

    y ' = [ sec x / tan x - 1 ] y

    y ' = [ sec 2x / tan x -1 ] tan x / e x

    y ' = [ sec 2x - tan x ] / e x

    NOTE: Use the usual formula of differentiation to differentiate the above function and compare results.

Example 6: Find the derivative y' of function y given by

y = [ (x - 2)(x + 4) ] / [ (x + 1)(x + 5) ]

Solution to Example 6

  • Take the logarithms of both sides and expand the expressions obtained

    ln y = ln (x - 2) + ln (x + 4) - ln (x + 1) - ln (x + 5)

  • Differentiate both sides with respect to x

    y ' / y = 1 / (x - 2) + 1 / (x + 4) - 1 / (x + 1) - 1 / (x + 5)

  • Multiply all terms by y

    y ' = [ 1 / (x - 2) + 1 / (x + 4) - 1 / (x + 1) - 1 / (x + 5) ] y

  • Substitute y by its formula to obtain

    y ' = 2 [ 2x 2 + 13 x + 29] / [ (x + 1) 2 (x + 5) 2 ]

    NOTE: Use the usual formula of differentiation to differentiate the above function and compare results.

Example 7: Use the method of taking the logarithms to find y ' if y = u v, where u and v are functions of x.

Solution to Example 7

  • Take the logarithms of both sides and expand the expressions obtained

    ln y = ln u + ln v

  • Differentiate both sides with respect to x

    y ' / y = u ' / u + v ' / v

  • Multiply all terms by y and simplify to obtain y ' = [ u ' / u + v ' / v ] y

    y ' = [ u ' / u + v ' / v ] u v

    y ' = u ' v + v ' u

    NOTE: The result obtained is the well known product rule of differentiation.

Example 8: Use the method of taking the logarithms to find y ' if y = u / v, where u and v are functions of x.

Solution to Example 8

  • Take the logarithms of both sides and expand the expressions obtained using the logarithm properties

    ln y = ln u - ln v

  • Differentiate both sides with respect to x using the differentiation rule of the logarithm of a function

    y ' / y = u ' / u - v ' / v

  • Multiply all terms by y and simplify to obtain

    y ' = [ u ' / u - v ' / v ] y

    y ' = [ u ' / u - v ' / v ] [ u / v ]

    y ' = u ' / v - v ' u / [ v 2 ]

    y ' = [ u ' v - v ' u ] / [ v 2 ]

    NOTE: The result obtained is the well known quotient rule of differentiation of functions. .

More on differentiation and derivatives


Online Step by Step Calculus Calculators and SolversNew ! Factor Quadratic Expressions - Step by Step CalculatorNew ! Step by Step Calculator to Find Domain of a Function New !
Free Trigonometry Questions with Answers -- Interactive HTML5 Math Web Apps for Mobile LearningNew ! -- Free Online Graph Plotter for All Devices
Home Page -- HTML5 Math Applets for Mobile Learning -- Math Formulas for Mobile Learning -- Algebra Questions -- Math Worksheets -- Free Compass Math tests Practice
Free Practice for SAT, ACT Math tests -- GRE practice -- GMAT practice Precalculus Tutorials -- Precalculus Questions and Problems -- Precalculus Applets -- Equations, Systems and Inequalities -- Online Calculators -- Graphing -- Trigonometry -- Trigonometry Worsheets -- Geometry Tutorials -- Geometry Calculators -- Geometry Worksheets -- Calculus Tutorials -- Calculus Questions -- Calculus Worksheets -- Applied Math -- Antennas -- Math Software -- Elementary Statistics High School Math -- Middle School Math -- Primary Math
Math Videos From Analyzemath
Author - e-mail


Updated: 2 April 2013

Copyright 2003 - 2014 - All rights reserved