Integral of \( \sec^3(x) \)

\( \) \( \)\( \)\( \)

The method of integration by parts is used to find the integral \[ \int \sec^3 x \; dx \] The integration by parts is expressed as follows \[ \int u' v \; dx = u v - \int u v' \; dx \]
Let \( v = \sec x \) and \( u' = \sec^2 x \); hence \( u = \displaystyle \int \sec^2 x \; dx = \tan x \) and \( v' = \sec x \tan x \) to write
\[ \int \sec^3 x \; dx = \int \sec^2 x \; \sec x \; dx \\ = \tan x \; \sec x - \int \tan x \; \sec x \; \tan x \; dx \\ = \tan x \; \sec x - \int \tan^2 x \; \sec x \; dx \qquad (I)\]
Use the identity \( \tan^2 x = \sec^2 x - 1 \) to write the last integral as follows \[ \int \tan^2 x \; \sec x \; dx = \int (\sec^2 x - 1) \sec x dx \\ = \int \sec^3 x \; dx - \int \sec x \; dx \] Substitute in (I) and write the given integral as follows \[ \int \sec^3 x \; dx = \tan x \; \sec x + \int \sec x \; dx - \int \sec^3 x \; dx \] Add \( \displaystyle \int \sec^3 x \; dx \) to both sides of the above equation and simplify to obtain \[ 2 \int \sec^3 x \; dx = \tan x \; \sec x + \int \sec x \; dx \] Use the common integral \( \displaystyle \int \sec x \; dx = \ln |\tan x + sec x| \) to write the above as \[ 2 \int \sec^3 x \; dx = \tan x \; \sec x + \ln |\tan x + sec x| \] Divide all terms by \( 2 \) to obtain the final answer. \[ \boxed { \int \sec^3 x \; dx = \dfrac{1}{2} \left( \tan x \; \sec x + \ln |\tan x + \sec x| \right) + c } \]



More References and Links

  1. University Calculus - Early Transcendental - Joel Hass, Maurice D. Weir, George B. Thomas, Jr., Christopher Heil - ISBN-13 : 978-0134995540
  2. Calculus - Gilbert Strang - MIT - ISBN-13 : 978-0961408824
  3. Calculus - Early Transcendental - James Stewart - ISBN-13: 978-0-495-01166-8