Several examples related to the limits of trigonometric functions with detailed solutions and exercises with answers are presented.
Find the limit
\[
\lim_{x \to 0} \frac{1 - \cos x}{x}
\]
Solution to Example 1:
Let us multiply the numerator and denominator by \( 1 + \cos x \) and write
\[
\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{1 - \cos x}{x} \cdot \frac{1 + \cos x}{1 + \cos x}
\]
The numerator becomes equal to \( 1 - \cos^2 x = \sin^2 x \), hence
\[
\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{\sin^2 x}{x} \cdot \frac{1}{1 + \cos x}
\]
The limit can be written
\[
\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \left( \frac{\sin x}{x} \right) \cdot \lim_{x \to 0} \left( \frac{\sin x}{1 + \cos x} \right) = (1)\left(\frac{0}{2}\right) = 0
\]
We have used the theorem: \(\lim_{x \to 0} \dfrac{\sin x}{x} = 1\).
Find the limit \[ \lim_{x \to 0} \dfrac{\sin 4 x}{4 x} \]
Solution to Example 2:
Let \( t = 4 x \). When \( x \) approaches 0, \(t\) approaches 0, so that
\[ \lim_{x \to 0} \dfrac {\sin 4 x}{4 x} = \lim_{t \to 0} \dfrac {\sin t}{t} \]
We now use the theorem: \( \lim_{t \to 0} \dfrac {\sin t}{t} = 1 \) to find the limit
\[ \lim_{x \to 0} \dfrac {\sin 4 x}{4 x} = \lim_{t \to 0} \dfrac {\sin t}{t} = 1 \]
Find the limit \[ \lim_{x \to 0} \dfrac{\sin|x|}{x} \]
Solution to Example 5:
We shall find the limit as $x$ approaches 0 from the left and as \( x \) approaches $0$ from the right. For \( x \lt 0 \), \( | x | = -x \)
\[ \lim_{x \to 0^-} \dfrac{\sin|x|}{x} \]
\[ = \lim_{x \to 0^-} \dfrac{\sin (- x)}{x} \]
\[ = - \lim_{x \to 0^-} \dfrac{\sin x}{x} \]
\[ = -1 \]
For \( x \gt 0 \), \( | x | = x \)
\[ \lim_{x \to 0^+} \dfrac{\sin | x |}{x} \]
\[ \lim_{x \to 0^+} \dfrac{\sin x }{x} \]
\[ = 1 \]
The limits from the left and from the right have different values, therefore the above limit does not exist.
\[ \lim_{x \to 0} \dfrac{\sin | x |}{x} \quad \text{DOES NOT EXIST} \]
Find the limit \[ \lim_{x \to 0} \dfrac{x}{\tan x} \]
Solution to Example 6:
We first use the trigonometric identity \( \tan x = \dfrac{\sin x}{\cos x} \)
\[ \lim_{x \to 0} \dfrac{x}{\tan x} \]
\[ = \lim_{x \to 0} \dfrac{x}{\dfrac{\sin x}{\cos x}} \]
\[ = \lim_{x \to 0} \dfrac{ x \cos x}{\sin x} \]
\[ = \lim_{x \to 0} \dfrac{\cos x}{\sin x / x} \]
We now use the theorem of the limit of the quotient.
\[ = \dfrac{\lim_{x \to 0} \cos x}{\lim_{x \to 0} (\sin x / x)} = 1 / 1 = 1 \]
Find the limit \[ \lim_{x \to 0} x \csc x \]
Solution to Example 7:
We first use the trigonometric identity \( \csc x = 1 / \sin x \)
\[ \lim_{x \to 0} x \csc x \]
\[ = \lim_{x \to 0} x / \sin x \]
\[ = \lim_{x \to 0} \dfrac{1}{\sin x / x} \]
The limit of the quotient is used.
\[ = 1 / 1 = 1 \]