Processing math: 100%
Tables of Mathematical Formulas
1. Decimal Multipliers
101
|
deka (da)
|
10−1
|
deci (d)
|
102
|
hecto (h)
|
10−2
|
centi (c)
|
103
|
kilo (k)
|
10−3
|
milli (m)
|
106
|
mega (M)
|
10−6
|
micro (u)
|
109
|
giga (G)
|
10−9
|
nano (n)
|
1012
|
tera (T)
|
10−12
|
pico (p)
|
1015
|
peta (P)
|
10−15
|
femto (f)
|
1018
|
exa (E)
|
10−18
|
atto (a)
|
2. Series
Maclaurin Series.
1. ex=1+x+x22!+...+xnn!+... for all x
2. sinx=x−x33!+x55!−x77!+... for all x
3. cosx=1−x22!+x44!−x66!+... for all x
4. ln(1+x)=x−x22+x33−...+(−1)n+1xnn+... for (−1<x≤1)
5. tanx=x+13x3+215x5+17315x7+... for (−π2<x<π2)
6. arcsinx=x+12x33+1⋅32⋅4x55+1⋅3⋅52⋅4⋅6x77+... for (−1<x<1)
7. arctanx=x−x33+x55−... for (−1<x<1)
8. sinhx=x+x33!+x55!+x77!+... for all x
9. coshx=x+x22!+x44!+x66!+... for all x
10. arcsinh x=x−12x33+1⋅32⋅4x55−1⋅3⋅52⋅4⋅6x77+... for (−1<x<1)
11. 11−x=1+x+x2+x3+... for (−1<x<1)
Arithmetic Series.
12. Sn=a+(a+d)+(a+2d)+...+(a+[n−1]d)=n2[first term+last term]=n2[a+(a+[n−1]d)]=n(a+[n−1]d)
Geometric Series.
13. Sn=a+ar+ar2+ar3+...+arn−1=a1−rn1−r
Integer Series.
14. 1+2+3+...+n=12n(n+1)
15. 12+22+32+...+n2=16n(n+1)(2n+1)
15. 13+23+33+...+n3=(12n(n+1))2
3. Factorial, Permutations and Combinations.
1. n factorial=n!=n.(n−1).(n−2)...2.1
2. Permutations of n objects taken r at the time:
nPr=n!(n−r)!
3. Combinations of n objects taken r at the time:
nCr=n!r!(n−r)!
4. Binomial Expansion (Formula).
1. If n is a positive integer, we can expand (x+y)n as follows
(x+y)n=(n0)xn+(n1)xn−1y+(n2)xn−2y2+...+(nn)yn
The general term (nr) is given by
(nr)=n!r!(n−r)!
5. Trigonometric Formulas.
Sum / Difference of Angles Formulas.
1. cos(A+B)=cosAcosB−sinAsinB
2. cos(A−B)=cosAcosB+sinAsinB
3. sin(A+B)=sinAcosB+cosAsinB
4. sin(A−B)=sinAcosB−cosAsinB
5. tan(A+B)=tanA+tanB1−tanAtanB
6. tan(A−B)=tanA−tanB1+tanAtanB
Sum / Difference of Trigonometric Functions Formulas.
7. sinA+sinB=2sin[(A+B)/2]cos[(A−B)/2]
8. sinA−sinB=2cos[(A+B)/2]sin[(A−B)/2]
9. cosA+cosB=2cos[(A+B)/2]cos[(A−B)/2]
10. cosA−cosB=−2sin[(A+B)/2]sin[(A−B)/2]
Product of Trigonometric Functions Formulas.
11. 2sinAcosB=sin(A+B)+sin(A−B)
12. 2cosAsinB=sin(A+B)−sin(A−B)
13. 2cosAcosB=cos(A+B)+cos(A−B)
14. 2sinAsinB=−cos(A+B)+cos(A−B)
Multiple Angles Formulas.
15. sin2A=2sinAcosA
16. cos2A=cos2A−sin2A=2cos2A−1=1−2sin2A
17. sin3A=3sinA−4sin3A
18. cos3A=4cos3A−3cosA
Power Reducing Formulas.
19. sin2A=12[1−cos2A]
19. cos2A=12[1+cos2A]
More Tables of Formulas
Table of Derivatives.
Table of Integrals.
Table of Laplace Transforms.
Table of Fourier Transforms.