This page presents a carefully selected set of questions on the composition of functions, each followed by a clear and detailed solution. The goal is to strengthen conceptual understanding and improve computational skills.
Let $f(x) = 2x + 3$ and $g(x) = -x^2 + 1$. Find the composite function $(f \circ g)(x)$.
By definition, \[ (f \circ g)(x) = f(g(x)). \] Substitute $g(x)$ into $f$: \[ (f \circ g)(x) = 2(-x^2 + 1) + 3 = -2x^2 + 5. \]
Given $f(2)=3$, $g(3)=2$, $f(3)=4$, and $g(2)=5$, evaluate $(f \circ g)(3)$.
Let \[ f(x) = \sqrt{x+2}, \quad g(x) = \ln(1 - x^2). \] Find $(g \circ f)(x)$ and determine its domain.
Domain:
The domain is the intersection of the above sets: \[ [-2,-1). \]
Let \[ f = \{(-2,1),(0,3),(4,5)\}, \quad g = \{(1,1),(3,3),(7,9)\}. \] Find $g \circ f$, and state its domain and range.
\[ g \circ f = \{(-2,1),(0,3)\} \]
Domain: $\{-2,0\}$ Range: $\{1,3\}$
Let $f(x)=\ln x$. Find the derivative of \[ F(x) = (f \circ f)(x). \]
Write \[ F(x) = |4x^2 + 2x - 5| \] as the composition of two functions.
Given $g(x)=\dfrac{1}{x}$ and \[ F(x) = \frac{1/x}{1+x}, \] write $F$ as a composite function.
Let \[ f(x)= \begin{cases} x, & x<0 \\ x^2, & x\ge 0 \end{cases} \quad\text{and}\quad g(x)=\sqrt{x}. \] Find $g(f(x))$.
True or False: $f(g(x)) = g(f(x))$ for all functions $f$ and $g$.
Evaluate $f(g(h(1)))$ if \[ h(x)=-|x|,\quad g(x)=x-1,\quad f(x)=\frac{1}{x+2}. \]
Therefore, $f(g(h(1)))$ is undefined.