College Algebra Worksheet (2)

Exponential Growth and Decay Problems

If a certain quantity A is growing continuously at rate r , then A may be written as a function of time as follows $A=A_{0} e^{r t}$. If A is decaying continuously at rate r , then A may be written as follows $A=A_{0} e^{-r t}$. The positive constant r is called either the growth rate (for exponential growth) or the decay constant (for exponential decay). A_{0} is the initial amount of A (i.e. the amount A when $t=0$ or $\left.A_{0}=A(0)\right)$.

The half life of a decaying material is the time T it takes a certain amount of this material modeled by $A=A_{0} e^{-r t}$ to become $\frac{A_{0}}{2}$. T may be found as follows

$$
A_{0} e^{-r T}=\frac{A_{0}}{2}
$$

divide both sides by A_{0} and solve for T

$$
\begin{aligned}
e^{-r T} & =\frac{1}{2} \\
-r T & =\ln \frac{1}{2} \\
-r T & =-\ln 2
\end{aligned}
$$

$$
T=\frac{\ln 2}{r}
$$

Applications of Growth and Decay Models

Many natural phenomena and man made physical systems are modeled by the same growth and decay models seen above.

1. exponential growth

- population growth
- compound interest
- charge across capacitor in an electrical circuit after power is switched on.

2. exponential decay examples

- radioactive decay
- concentration of medicine in the body
- charge across capacitor in an electrical circuit after power is switched off.
- atmospheric pressure as a function of altitude

Example 1

At $\mathrm{t}=0$ there are 50 grams of a radioactive isotope. The isotope has a half-life of 16 minutes. Use the exponential decay model to write the amount A as a function of time t.

Solution

We first use the half life formula $T=\frac{\ln 2}{r}$ to calculate r.
$r=\frac{\ln 2}{T}=0.04332$ minutes $^{-1}$
Hence $\quad A=A_{0} e^{-r t}=50 e^{-0.04332 t}$, where A is in grams and t in minutes.

Problems

1. In the year 2000 the population of a large city was 25 million and increasing continuously at the rate of 2.5% per year.
a What was the population of this city in the year 2005 ?
b Assuming that the population will continue increasing continuously at the same rate, when will the population reach 50 million?
2. The population of a certain country is growing exponentially according to the model $P=P_{0} e^{r t}$ where P is the population in millions and t is the number of years after 1980. In 1988 the population was 35 million, and in 1995 the population was 48 million. What is the growth rate r ?
3. At time $t=0$ you have 100 grams of radioactive Chromium- 48 . Ten hours later you have 74 grams left. What is the half life of Chromium-48?
4. The radioactive isotope Cobalt-60 (Co-60) has a half-life of 5.24 years. You have an initial amount of 80 grams.
a Write the amount as a function of time (in years).
b How much Co-60 is left after 2 years?
c How much time has passed when 40% of the initial amount is left?
5. The atmospheric pressure at an altitude x above sea level decreases according to the model $P=P_{0} e^{-k x}$, where $P_{0}=14.7 \mathrm{psi}$ is the pressure at sea level and $k=3.9810^{-5} \mathrm{ft}^{-1}$.
a What is the atmospheric pressure on top of Mount Everest (29000 ft)?.
b Solve for x in terms of P, P_{0} and k.
c At which altitude is the atmospheric pressure 11.5 psi ?
6. A population of bacteria is growing exponentially. It takes the population 15 minutes to double. How long will it take for the population to triple (3)?
