Solutions to Simplify Exponents and Radicals

We present detailed solutions and explanations to the questions in simplify exponents and radicals. The rules for radicals and exponents are used to simplify numerical and algebraic expressions with exponents and radical expressions and therefore need to be reviewed.

Evaluate Numerical Expressions with Exponents

Question 1

Evaluate the following expressions:
  1.   32 = 3 3 = 9
  2.   - 34 = - (3 3 3 3 ) = - 81
  3.   (- 3)4 = - 3 - 3 - 3 - 3 ) = 81
  4.   120 = 1
  5.   020 = 0
  6.   0- 4 = 1 / 0 4 = 1 / 0 : undefined because division by zero is not allowed in maths.
  7.   (-1)7 = - 1
  8.   (-1)4 = 1
  9.   (-1) - 3 = 1 / (-1) 3 = 1 / (- 1) = - 1
  10.   (- 2 / 3) -2 = (- 3 / 2) 2 = (-1) 2 ( 3 / 2) 2 = 9 / 4
  11.   (- 2)-2 / 4-2 = 42 / (- 2)2 = 16 / 4 = 4
  12.   - 3-3 + (- 2)-2 = - 1 / 33 + 1 / (- 2)2 = - 1 / 27 + 1 / 4 = 23 / 108
  13.   x4 for x = - 2
    x4 = (-2)4 = 16
  14.   - x2 for x = - 3
    - x2 = - (-3)2 = - 9
  15.   - x5 for x = - 2
    - x5 = -( - 2) 5 = 32
  16.   x4 for x = - 2 / 3
    (- 2 / 3)4 = (-2)4 / (3)4 = 16 / 81
  17.   - x-2 for x = - 1 / 2
    - x-2 = - (- 1 / 2)-2 = - ( - 1)-2 ( 1 / 2) -2
    = - (1) (2 / 1) 2 = - 4 / 1 = - 4
  18.   - x5 for x = - 1 / 3
    - x5 = - ( - 1 / 3)5 - ( - 1) 5( 1 / 3)5
    = - (-1) (1 / 243) = 1 / 243

Evaluate Numerical Expressions with Radicals and rational exponents

Question 2

Evaluate the following expressions:
  1.   √(64) = √(82) = 8
  2.   ∛(-8) = ∛((-2)3) = - 2
  3.   43/2 = (√4) 3 = 2 3 = 8
  4.   82/3 = (∛(8)) 2 = 2 2 = 4
  5.   0.00013/4 = ( 4√(0.0001) )3
    = ( 4√(1/10000) )3 = ( 4√(1/104) )3
    = ( 1 / 10 )3 = 1 / 103 = 0.001
  6.   16- 3/4 = 1 / 16 3/4 = 1 / ( 4√(16)) 3
    = 1 / 2 3 = 1 / 8
  7.   √2 √8 = √(2 8) = √(16) = 4
  8.   ∛2 ∛(32) = ∛(2 32) = ∛(64) = 4
  9.   √2 / √8 = √(2 / 8) = √(1 / 4) = 1 / 2
  10.   ∛(-16) / ∛2 = ∛(-16/2) = ∛(- 8) = - 2
  11.   - 2 (6√8) (56√8) = (- 2 5) 6√(8 8)
    = - 10 6√(64) = - 10 6√(26) = -10(2) = - 20
  12.   - 4 ∛(375) / (2∛3) = (- 4 / 2) ∛ (375 / 3) = - 2 ∛ (375 / 3)
    = - 2 ∛ (125) = - 2 5 = - 10

Simplify Algebraic Expressions with Exponents

Question 3

Simplify the following expressions:
  1.   x2 x5 = x2 + 5 = x7
  2.   y4 / y2 = y4 - 2 = y2
  3.   (x2)-2 = (x2 (-2)) = x- 4 = 1 / x4

  4. \large {3(\dfrac{1}{2} x^4)(\dfrac{1}{3} x^3) = (3 \times \dfrac{1}{2} \times \dfrac{1}{3} ) x^{4 + 3} = \dfrac{1}{2} x^7}

  5. \large {(2 x)^4(\dfrac{1}{4} x^{-3}) = 2^4 x^4 (\dfrac{1}{4} x^{-3}) \\\\ = (2^4 \times \dfrac{1}{4}) x^{4-3} = 4 x}

  6. \large { \dfrac{(3x)^2(-2x)^3}{(2x)^2} = \dfrac{3^2 x^2 (-2)^3 x^3}{2^2 x^2} \\\\ = \dfrac{3^2 (-2)^3}{2^2} \dfrac{x^3}{x^2} = - 18 x }

  7. \large { \dfrac{(4x)^2(100 x)^0}{(3x)^2} = \dfrac{4^2 x^2 \times 1}{3^2 x^2} = 16/9 }
  8.   (- 2 x2 y -3)3 = (- 2)3 (x2)3 (y -3) 3 = - 8 x6 y-9 = - 8 x6 / y9
  9.   (3 x2 y3) (2 x5 y - 2) = (3 2)(x2 x5)(y3 y - 2) = 6 x2 + 5 y3 - 2 = 6 x7 y
  10.   (- 2 x2 y3 z4) ( - 4 x3 y z - 8) ( 5 x y2 z2) = (-2 (-4) 5)(x2 x3 x)(y3 y y2)(z4 z-8 z2)
    = 40 x2 + 3 + 1 y3 + 1 + 2 z4 - 8 + 2 = 40 x6 y6 z- 2 = 40 x6 y6 / z2

  11. \large { (-2xy^2)^2 \left (\dfrac{x^6}{(2x)^2} \right)^3 = (-2)^2 x^2 y^4 \left (\dfrac{x^{18}}{(2x)^6} \right) = \dfrac{4x^2 y^4x^{18}}{2^6 x^6}} \\\\ \large { = \dfrac{4}{2^6} \dfrac{x^{2+18}y^4}{x^6} = \dfrac{1}{16} {x^{14} y^4} }

  12. \large { \left (\dfrac{4 x^6 y^3}{-8x^3y^{-2}} \right) = \dfrac{4}{-8} \; \dfrac{x^6 y^3}{x^3y^{-2}} = -\dfrac{1}{2} x^{6-3} y^{3-(-2)} = -\dfrac{1}{2} x^3 y^5 }

  13. \large { \left (\dfrac{- 4 x^3 y^2}{3 x^3 y^3} \right) \left (\dfrac{3 x^2 y^5}{-6x^3y^2} \right) = \dfrac{(- 4 \times 3)}{(3 \times (-6))} \dfrac{(x^3 y^2)(x^2 y^5)}{(x^3 y^3)(x^3y^2)} }\\\\\\ \large { = \dfrac{2}{3} \dfrac{x^5 y^7}{x^6 y^5} = \dfrac{2}{3} x^{5-6} y^{7-5}= \dfrac{2}{3} \dfrac{y^2}{x} }

  14. \large { \dfrac{1}{6}(x^2 y z^3)\left (\dfrac{4 x^2 y^3}{3 x^2 y^{-3}z^2} \right) \left (\dfrac{3 x^2 y^5 z}{-x^3 y^2 z^3} \right) = \dfrac{1 \times 4 \times 3}{6 \times 3 \times (-1)} \dfrac{(x^2 y z^3)(x^2 y^3)(x^2 y^5 z)}{(x^2 y^{-3}z^2)(-x^3 y^2 z^3)} } \\\\\\ \large { = (-\dfrac{2}{3}) \dfrac{x^{2+2+2}y^{1+3+5}z^{3+1}}{x^{2+3} y^{-3+2} z^{2+3} } = - \dfrac{2}{3} \dfrac{x^6 y^9 z^4}{x^5 y z^5} = - \dfrac{2}{3} \; \dfrac{x y^{10} }{z} }

  15. \large { (4 x^{2/3})(-8x^{1/2}) = (4 \times; (-8))(x^{2/3+1/2}) = - 32 x^{7/6} }

  16. \large { (4 x)^{3/2}(9x)^{1/2} = 4^{3/2} x^{3/2} 9^{1/2} x^{1/2} = (\sqrt 4)^3 (\sqrt 9) x^{3/2+1/2} = 8 \times 3 x^2 = 24 x^2}

  17. \large { (- 27 x^{3/2})^{1/3} = (- 27)^{1/3} (x^{3/2})^{1/3} = \sqrt[3]{-27} x^{3/2 \times 1/3} = - 3 x^{1/2} = - 3 \sqrt x }

  18. \large {\left (\dfrac{-8x^3}{y^{-6}} \right)^{2/3} = \dfrac{(-8x^3)^{2/3}} {(y^{-6})^{2/3}} = \dfrac{(-8)^{2/3} (x^3)^{2/3}} {(y^{-6 \times (2/3)}}} \\\\\\ \large { = \dfrac{(\sqrt[3]{-8})^2 (x^{3 \times (2/3)})} {(y^{-4})} = 4 x^2 y^4 }

  19. \large { x^{5/3} x^{1/6} x ^{-11/6} = x^{5/3+1/6 -11/6} = x^0 = 1 , x \ne 0 }

Simplify Algebraic Expressions with Radicals

Question 4


  1. \large { \sqrt{x^2} = | x |}

  2. \large { \sqrt[4]{16x^4} = \sqrt[4]{16} \sqrt[4]{x^4} = 4 | x | }

  3. \large { \sqrt{(2x - 1)^2} = |2x - 1| }

  4. \large { \sqrt[3]{-27x^3} = \sqrt[3]{-27} \sqrt[3]{x^3} = \sqrt[3]{(-3)^3} \sqrt[3]{x^3} = - 3 x }

  5. \large { \sqrt[3]{8 x^6 y^3} = \sqrt[3]{8} \sqrt[3]{ x^6} \sqrt[3]{y^3} = 2 x^{6/3} y = 2 x^2 y}

  6. \large { \sqrt{x^3} \sqrt{x^2} = \sqrt{x^3 x^2} = \sqrt{x^{3+2}} = \sqrt{x^5} = \sqrt{x^4 \times x} = x^2 \sqrt x }

  7. \large { \sqrt[3]{\left (\dfrac{-8x^6}{y^{-3}} \right)} = \dfrac{\sqrt[3]{-8x^6}}{\sqrt[3]{y^{-3}}} = \dfrac{\sqrt[3]{-8} \sqrt[3]{x^6}} {\sqrt[3]{y^{-3} }} }\\\\\\ \large { = \dfrac{\sqrt[3]{(-2)^3} \sqrt[3]{(x^2)^3}} {\sqrt[3]{(y^{-1})^3 }} = \dfrac{-2 x^2}{y^{-1}} = -2 x^2 y}

  8. \large { \dfrac{ \sqrt[5]{64x^9 y^7}}{ \sqrt[5]{2 x^4 y^2}} = \sqrt[5] {\dfrac{64x^9 y^7}{2 x^4 y^2}}} \\\\\\ \large { = \sqrt[5] {32 x^{9-4} y^{7-2}} = \sqrt[5] {2^5} \sqrt[5] x^{5} \sqrt[5] y^{5} = 2 x y }

  9. \large { (4\sqrt[8]{b^2})( 5\sqrt[8]{b^3})( \sqrt[8]{b^3}) = (4 \times 5) \sqrt[8]{b^2 b^3 b^3 } = 20 \sqrt[8]{b^8 } = 20 |b| = 20 b }
    Note: In the last question; since 8√(b3) is real then b is greater than or equal to zero. Hence |b| = b.

More References and links on quadratic functions and parabolas

the rules for radicals and exponents
simplify radical expressions
Divide Radical Expressions
Radical Expressions

Home Page
More To Explore