Grade 12 Problems on Complex Numbers with Solutions and Answers

Grade 12 problems on complex numbers with detailed solutions are presented.




Free Practice for SAT, ACT
and Compass Math tests

  1. Evaluate the following expressions

    a) (3 + 2i) - (8 - 5i)

    b) (4 - 2i)*(1 - 5i)

    c) (- 2 - 4i) / i

    d) (- 3 + 2i) / (3 - 6i)

  2. If (x + yi) / i = ( 7 + 9i ) , where x and y are real, what is the value of (x + yi)(x - yi)?

  3. Determine all complex number z that satisfy the equation

    z + 3 z' = 5 - 6i


    where z' is the complex conjugate of z.

  4. Find all complex numbers of the form z = a + bi , where a and b are real numbers such that z z' = 25 and a + b = 7

    where z' is the complex conjugate of z.

  5. The complex number 2 + 4i is one of the root to the quadratic equation x2 + bx + c = 0, where b and c are real numbers.

    a) Find b and c

    b) Write down the second root and check it.

  6. Find all complex numbers z such that z2 = -1 + 2 sqrt(6) i.

  7. Find all complex numbers z such that (4 + 2i)z + (8 - 2i)z' = -2 + 10i, where z' is the complex conjugate of z.

  8. Given that the complex number z = -2 + 7i is a root to the equation:

    z3 + 6 z2 + 61 z + 106 = 0


    find the real root to the equation.

  9. a) Show that the complex number 2i is a root of the equation

    z4 + z3 + 2 z2 + 4 z - 8 = 0


    b) Find all the roots root of this equation.

  10. P(z) = z4 + a z3 + b z2 + c z + d is a polynomial where a, b, c and d are real numbers. Find a, b, c and d if two zeros of polynomial P are the following complex numbers: 2 - i and 1 - i.

Solutions to the Above Questions
  1. a) -5 + 7i

    b) -6 - 22i

    c) -4 + 2i

    d) -7/15 - 4i/15

  2. (x + yi) / i = ( 7 + 9i )

    (x + yi) = i(7 + 9i) = -9 + 7i

    (x + yi)(x - yi) = (-9 + 7i)(-9 - 7i) = 81 + 49 = 130

  3. Let z = a + bi , z' = a - bi ; a and b real numbers.

    Substituting z and z' in the given equation obtain

    a + bi + 3*(a - bi) = 5 - 6i

    a + 3a + (b - 3b) i = 5 - 6i

    4a = 5 and -2b = -6

    a = 5/4 and b = 3

    z = 5/4 + 3i

  4. z z' = (a + bi)(a - bi)

    = a2 + b2 = 25

    a + b = 7 gives b = 7 - a

    Substitute above in the equation a2 + b2 = 25

    a2 + (7 - a)2 = 25

    Solve the above quadratic function for a and use b = 7 - a to find b.

    a = 4 and b = 3 or a = 3 and b = 4

    z = 4 + 3i and z = 3 + 4i have the property z z' = 25.

  5. a) Substitute solution in equation: (2 + 4i)2 + b(2 + 4i) + c = 0

    Expand terms in equation and rewrite as: (-12 + 2b + c) + (16 + 4b)i = 0

    Real part and imaginary part equal zero.

    -12 + 2b + c = 0 and 16 + 4b = 0

    Solve for b: b = -4 , substitute and solve for c: c = 20

    b) Since the given equation has real numbers, the second root is the complex conjugate of the given root: 2 - 4i is the second solution.

    Check: (2 - 4i)2 - 4 (2 - 4i) + 20

    (Expand) = 4 - 16 - 16i - 8 + 16i + 20

    = (4 - 16 - 8 + 20) + (-16 + 16)i = 0

  6. Let z = a + bi

    Substitute into given equation: (a + bi)2 = -1 + 2 sqrt(6) i

    Expand: a2 - b2 + 2 ab i = - 1 + 2 sqrt(6) i

    Real part and imaginary parts must be equal.

    a2 - b2 = - 1 and 2 ab = 2 sqrt(6)

    Equation 2 ab = 2 sqrt(6) gives: b = sqrt(6) / a

    Substitute: a2 - ( sqrt(6) / a )2) = - 1

    a4 - 6 = - a2

    Solve above equation and select only real roots: a = sqrt(2) and a = - sqrt(2)

    Substitute to find b and write the two complex numbers that satisfies the given equation.

    z1 = sqrt(2) + sqrt(3) i , z2 = - sqrt(2) - sqrt(3) i

  7. Let z = a + bi where a and b are real numbers. The complex conjugate z' is written in terms of a and b as follows: z'= a - bi. Substitute z and z' in the given equation

    (4 + 2i)(a + bi) + (8 - 2i)(a - bi) = -2 + 10i

    Expand and separate real and imaginary parts.

    (4a - 2b + 8a - 2b) + (4b + 2a - 8b - 2a )i = -2 + 10i

    Two complex numbers are equal if their real parts and imaginary parts are equal. Group like terms.

    12a - 4b = -2 and - 4b = 10

    Solve the system of the unknown a and b to find:

    b = -5/2 and a = -1

    z = -1 - (5/2)i

  8. Since z = -2 + 7i is a root to the equation and all the coefficients in the terms of the equation are real numbers, then z' the complex conjugate of z is also a solution. Hence

    z3 + 6 z2 + 61 z + 106 = (z - (-2 + 7i))(z - (-2 - 7i)) q(z)

    = (z2 + 4z + 53) q(z)

    q(z) = [ z3 + 6 z2 + 61 z + 106 ] / [ z2 + 4z + 53 ] = z + 2

    Z + 2 is a factor of z3 + 6 z2 + 61 z + 106 and therefore z = -2 is the real root of the given equation.

  9. a) (2i)4 + (2i)3 + 2 (2i)2 + 4 (2i) - 8

    = 16 - 8i - 8 + 8i - 8 = 0

    b) 2i is a root -2i is also a root (complex conjugate because all coefficients are real).

    z4 + z3 + 2 z2 + 4 z - 8 = (z - 2i)(z + 2i) q(z)

    = (z2 + 4)q(z)

    q(z) = z2 + z - 2

    The other two roots of the equation are the roots of q(z): z = 1 and z = -2.

  10. Since all coefficients of polynomial P are real, the complex conjugate to the given zeros are also zeros of P. Hence

    P(z) = (z - (2 - i))(z - (2 + i))(z - (1 - i))(z - (1 + i)) =

    = z4 - 6 z3 + 15 z2 - 18 z + 10

    Hence: a = -6, b = 15, c = -18 and d = 10.


More High School Math (Grades 10, 11 and 12) - Free Questions and Problems With Answers

More Middle School Math (Grades 6, 7, 8, 9) - Free Questions and Problems With Answers

More Primary Math (Grades 4 and 5) with Free Questions and Problems With Answers

Author - e-mail

Home Page

Interactive HTML5 Math Web Apps for Mobile LearningNew !
Free Online Graph Plotter for All Devices
Home Page -- HTML5 Math Applets for Mobile Learning -- Math Formulas for Mobile Learning -- Algebra Questions -- Math Worksheets -- Free Compass Math tests Practice
Free Practice for SAT, ACT Math tests -- GRE practice -- GMAT practice Precalculus Tutorials -- Precalculus Questions and Problems -- Precalculus Applets -- Equations, Systems and Inequalities -- Online Calculators -- Graphing -- Trigonometry -- Trigonometry Worsheets -- Geometry Tutorials -- Geometry Calculators -- Geometry Worksheets -- Calculus Tutorials -- Calculus Questions -- Calculus Worksheets -- Applied Math -- Antennas -- Math Software -- Elementary Statistics High School Math -- Middle School Math -- Primary Math
Math Videos From Analyzemath
Author - e-mail


Updated: 2 April 2013

Copyright © 2003 - 2014 - All rights reserved