Simplifying Algebraic Expressions with Exponents
Step-by-Step Examples
This collection of intermediate algebra problems focuses on simplifying expressions using the rules and properties of exponents. Detailed solutions are provided at the bottom of the page to help reinforce your understanding.
Basic Exponent Rules for Simplifying Expressions
- Product of Powers Rule:
\[ a^m \cdot a^n = a^{m+n} \]
- Quotient of Powers Rule:
\[ \dfrac{a^m}{a^n} = a^{m-n} \quad \text{(for } a \ne 0 \text{)} \]
- Power of a Power Rule:
\[ (a^m)^n = a^{m \cdot n} \]
- Power of a Product Rule:
\[ (ab)^m = a^m \cdot b^m \]
- Power of a Quotient Rule:
\[ \left( \dfrac{a}{b} \right)^m = \dfrac{a^m}{b^m} \quad \text{(for } b \ne 0 \text{)} \]
- Zero Exponent Rule:
\[ a^0 = 1 \quad \text{(for } a \ne 0 \text{)} \]
- Negative Exponent Rule:
\[ a^{-m} = \dfrac{1}{a^m} \quad \text{(for } a \ne 0 \text{)} \]
Note: all letters (variables) used in the expressions below represent numbers that are not equal to 0.
-
Simplify the following expressions and write them with positive exponents.
a) \[x^2 \cdot x^3\]
b) \[a^{-2} \cdot a^{-3}\]
c) \[\dfrac{a^5}{a^2}\]
d) \[\dfrac{a^{-3}}{a^7}\]
e) \[(x^2)^3\]
f) \[(x^{-2})^5\]
g) \[(x^2 y^3)^3\]
h) \[(x^{-2} y^3)^8\]
-
Simplify the following expressions and write them with positive exponents.
a) \[\left(\dfrac{y^4}{y^2}\right)^3\]
b) \[\left(\dfrac{y^4}{y^{-3}}\right)^{-2}\]
c) \[\left(\dfrac{y^4 x^{12}}{y^2}\right)^3\]
d) \[\left(\dfrac{y^{12} x^{56}}{y^3}\right)^0\]
e) \[\dfrac{(x^2 y^4)^2}{(x y^{-2})^3}\]
-
Simplify the following expressions and write them with positive exponents.
a) \[\dfrac{(x y^2)^2 (x^2 y^2)^2}{(x y)^4}\]
b) \[\left((a b^2)^3 (a^2 b^2)^4\right)^2\]
c) \[\dfrac{(x^2 y^3)^0 (x^4 y^3)^4}{(x y^2)^3}\]
d) \[\dfrac{(x^3 y^{-2})^2 (x^{-2} y^3)^4}{(x^{-2} y^{-2})^3}\]
Solutions to the Above Questions
-
a) \[x^2 \cdot x^3 = x^{2 + 3} = x^5\]
b) \[a^{-2} \cdot a^{-3} = a^{-2 - 3} = a^{-5} = \dfrac{1}{a^5}\]
c) \[\dfrac{a^5}{a^2} = a^{5 - 2} = a^3\]
d) \[\dfrac{a^{-3}}{a^7} = a^{-3 - 7} = a^{-10} = \dfrac{1}{a^{10}}\]
e) \[(x^2)^3 = x^{2 \cdot 3} = x^6\]
f) \[(x^{-2})^5 = x^{-2 \cdot 5} = x^{-10} = \dfrac{1}{x^{10}}\]
g) \[(x^2 y^3)^3 = x^{2 \cdot 3} y^{3 \cdot 3} = x^6 y^9\]
h) \[(x^{-2} y^3)^8 = x^{-2 \cdot 8} y^{3 \cdot 8} = x^{-16} y^{24} = \dfrac{y^{24}}{x^{16}}\]
-
a) \[\left( \dfrac{y^4}{y^2} \right)^3 = \dfrac{y^{4 \cdot 3}}{y^{2 \cdot 3}} = \dfrac{y^{12}}{y^6} = y^6\]
b) \[\left( \dfrac{y^4}{y^{-3}} \right)^{-2} = \dfrac{y^{4 \cdot (-2)}}{y^{-3 \cdot (-2)}} = \dfrac{y^{-8}}{y^6} = \dfrac{1}{y^{14}}\]
c) \[\left( \dfrac{y^4 x^{12}}{y^2} \right)^3 = \dfrac{(y^4 x^{12})^3}{y^{2 \cdot 3}} = \dfrac{y^{12} x^{36}}{y^6} = y^6 x^{36}\]
d) \[\left( \dfrac{y^{12} x^{56}}{y^3} \right)^0 = 1\]
e) \[\dfrac{(x^2 y^4)^2}{(x y^{-2})^3} = \dfrac{x^{4} y^8}{x^3 y^{-6}} = x y^{14}\]
-
a) \[\dfrac{(x y^2)^2 (x^2 y^2)^2}{(x y)^4} = \dfrac{x^2 y^4 \cdot x^4 y^4}{x^4 y^4} = \dfrac{x^6 y^8}{x^4 y^4} = x^2 y^4\]
b) \[\left( (a b^2)^3 (a^2 b^2)^4 \right)^2 = (a b^2)^6 (a^2 b^2)^8 = a^6 b^{12} \cdot a^{16} b^{16} = a^{22} b^{28}\]
c) \[\dfrac{(x^2 y^3)^0 (x^4 y^3)^4}{(x y^2)^3} = \dfrac{1 \cdot x^{16} y^{12}}{x^3 y^6} = x^{13} y^6\]
d) \[\dfrac{(x^3 y^{-2})^2 (x^{-2} y^3)^4}{(x^{-2} y^{-2})^3} = \dfrac{x^6 y^{-4} \cdot x^{-8} y^{12}}{x^{-6} y^{-6}} = \dfrac{x^{-2} y^8}{x^{-6} y^{-6}} = x^4 y^{14}\]
More References and Links