Simplifying Algebraic Expressions with Exponents
Step-by-Step Examples

This collection of intermediate algebra problems focuses on simplifying expressions using the rules and properties of exponents. Detailed solutions are provided at the bottom of the page to help reinforce your understanding.

Basic Exponent Rules for Simplifying Expressions

Note: all letters (variables) used in the expressions below represent numbers that are not equal to 0.
  1. Simplify the following expressions and write them with positive exponents.
    a) \[x^2 \cdot x^3\]
    b) \[a^{-2} \cdot a^{-3}\]
    c) \[\dfrac{a^5}{a^2}\]
    d) \[\dfrac{a^{-3}}{a^7}\]
    e) \[(x^2)^3\]
    f) \[(x^{-2})^5\]
    g) \[(x^2 y^3)^3\]
    h) \[(x^{-2} y^3)^8\]
  2. Simplify the following expressions and write them with positive exponents.
    a) \[\left(\dfrac{y^4}{y^2}\right)^3\]
    b) \[\left(\dfrac{y^4}{y^{-3}}\right)^{-2}\]
    c) \[\left(\dfrac{y^4 x^{12}}{y^2}\right)^3\]
    d) \[\left(\dfrac{y^{12} x^{56}}{y^3}\right)^0\]
    e) \[\dfrac{(x^2 y^4)^2}{(x y^{-2})^3}\]
  3. Simplify the following expressions and write them with positive exponents.
    a) \[\dfrac{(x y^2)^2 (x^2 y^2)^2}{(x y)^4}\]
    b) \[\left((a b^2)^3 (a^2 b^2)^4\right)^2\]
    c) \[\dfrac{(x^2 y^3)^0 (x^4 y^3)^4}{(x y^2)^3}\]
    d) \[\dfrac{(x^3 y^{-2})^2 (x^{-2} y^3)^4}{(x^{-2} y^{-2})^3}\]

Solutions to the Above Questions
  1. a) \[x^2 \cdot x^3 = x^{2 + 3} = x^5\] b) \[a^{-2} \cdot a^{-3} = a^{-2 - 3} = a^{-5} = \dfrac{1}{a^5}\] c) \[\dfrac{a^5}{a^2} = a^{5 - 2} = a^3\] d) \[\dfrac{a^{-3}}{a^7} = a^{-3 - 7} = a^{-10} = \dfrac{1}{a^{10}}\] e) \[(x^2)^3 = x^{2 \cdot 3} = x^6\] f) \[(x^{-2})^5 = x^{-2 \cdot 5} = x^{-10} = \dfrac{1}{x^{10}}\] g) \[(x^2 y^3)^3 = x^{2 \cdot 3} y^{3 \cdot 3} = x^6 y^9\] h) \[(x^{-2} y^3)^8 = x^{-2 \cdot 8} y^{3 \cdot 8} = x^{-16} y^{24} = \dfrac{y^{24}}{x^{16}}\]
  2. a) \[\left( \dfrac{y^4}{y^2} \right)^3 = \dfrac{y^{4 \cdot 3}}{y^{2 \cdot 3}} = \dfrac{y^{12}}{y^6} = y^6\] b) \[\left( \dfrac{y^4}{y^{-3}} \right)^{-2} = \dfrac{y^{4 \cdot (-2)}}{y^{-3 \cdot (-2)}} = \dfrac{y^{-8}}{y^6} = \dfrac{1}{y^{14}}\] c) \[\left( \dfrac{y^4 x^{12}}{y^2} \right)^3 = \dfrac{(y^4 x^{12})^3}{y^{2 \cdot 3}} = \dfrac{y^{12} x^{36}}{y^6} = y^6 x^{36}\] d) \[\left( \dfrac{y^{12} x^{56}}{y^3} \right)^0 = 1\] e) \[\dfrac{(x^2 y^4)^2}{(x y^{-2})^3} = \dfrac{x^{4} y^8}{x^3 y^{-6}} = x y^{14}\]
  3. a) \[\dfrac{(x y^2)^2 (x^2 y^2)^2}{(x y)^4} = \dfrac{x^2 y^4 \cdot x^4 y^4}{x^4 y^4} = \dfrac{x^6 y^8}{x^4 y^4} = x^2 y^4\] b) \[\left( (a b^2)^3 (a^2 b^2)^4 \right)^2 = (a b^2)^6 (a^2 b^2)^8 = a^6 b^{12} \cdot a^{16} b^{16} = a^{22} b^{28}\] c) \[\dfrac{(x^2 y^3)^0 (x^4 y^3)^4}{(x y^2)^3} = \dfrac{1 \cdot x^{16} y^{12}}{x^3 y^6} = x^{13} y^6\] d) \[\dfrac{(x^3 y^{-2})^2 (x^{-2} y^3)^4}{(x^{-2} y^{-2})^3} = \dfrac{x^6 y^{-4} \cdot x^{-8} y^{12}}{x^{-6} y^{-6}} = \dfrac{x^{-2} y^8}{x^{-6} y^{-6}} = x^4 y^{14}\]

More References and Links