-
TRUE
An absolute value is always ≥ 0, so it can never be less than 0.
-
TRUE
Since both are negative, \( b \lt a \), so \( b - a \lt 0 \).
-
FALSE
Simplifies to \( 2x + 7 = 2x + 10 \), which leads to \( 7 = 10 \), a contradiction. No solution.
-
FALSE
The multiplicative inverse of \( a \) is \( \frac{1}{a} \). So \( \frac{1}{-\frac{1}{4}} = -4 \).
-
FALSE
Test with \( x = 8 \), \( z = 2 \): LHS = \( \frac{8}{4} = 2 \); RHS = \( \frac{8}{2} + \frac{8}{2} = 4 + 4 = 8 \).
-
FALSE
LHS = \( 8 - 10 = -2 \), not -18.
-
FALSE
LHS = \( 2 \div 2 = 1 \); RHS = \( \frac{8}{2} = 4 \)
-
FALSE
Approximate values: LHS ≈ 34.1, RHS ≈ 33.4, so LHS > RHS.
-
TRUE
It's a horizontal line that never crosses the x-axis.
-
True or False \( \frac{n(n + 3)}{2} = \frac{3}{2} \) when \( n = 0 \).
FALSE
Substitute \( n = 0 \): LHS = 0, not \( \frac{3}{2} \).
-
TRUE
Both are \( |20 - (-9)| = 29 \) and \( |9 - (-20)| = 29 \).
-
TRUE
\( f(-3) = \sqrt{1 - (-3)} = \sqrt{4} = 2 \).
-
FALSE
Rewriting: \( y = -x + 1 \), slope is -1, not 2.
-
FALSE
It equals 0 when \( x = -5 \).
-
TRUE
On the x-axis: \( \sqrt{(5 - 0)^2} = 5 \).
-
FALSE
It's undefined when \( 2x - 4 = 0 \Rightarrow x = 2 \).
-
TRUE
\( a^{-2} = \frac{1}{a^2} \), so \( (-1/5)^{-2} = \frac{1}{(1/25)} = 25 \).
-
FALSE
Reciprocal of 0 is undefined.
-
TRUE
The additive inverse of \( a \) is the number that gives 0 when added to \( a \).
-
FALSE
Try \( x = 2 \): LHS = \( \frac{1}{-2} \), RHS = \( \frac{1}{2} - \frac{1}{4} = \frac{1}{4} \).