Column and Row Spaces and Rank of a Matrix

We present the definitions of column and row spaces of a matrix using examples with detailed solutions.

Column Space and Rank of a Matrix

Let A be an m × n matrix.
The column space of matrix A , denoted by Col A , is the set of all linear combinations of the columns of matrix A . If Column of Matrix are the columns of matrix A , then Column of Matrix Note that the columns Column of Matrix may not be independent and in what follows we look at examples on how to find the basis of Col A by selecting the independent columns only.
The rank of matrix A is the dimension of Col A which is given by the number of vectors in the basis of Col A .

Example 1
Find the basis of the column space and the rank of each of the matrices:
Column of Matrix


\( \) \( \) \( \) Solution to Example 1
a)
Let \( c_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \( c_2 = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \) be the columns of matrix \( A_1 \).
Note that \( c_2 = 2 c_1 \) and therefore \( c_1 \) and \( c_2 \) are NOT independent. As a result, we need one column only to span \( \text{Col}\; A_1 \).
hence the basis \( B \) of \( \text{Col} \; A_1 \) is given by: \( B = \{c_1\} \) or \( B = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\} \)
\( \text{Col} \; A_1 = \text{span} \{c_1\} \)
The basis of \( \text{Col} \; A_1 \) has one vector and therefore \( \text{Rank} (A_1) = 1 \).


b)
Let \( c_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \( c_2 = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \) be the columns of matrix \( A_2 \). Note that \( c_1 \) and \( c_2 \) are independent. As a result, we need both columns \( c_1 \) and \( c_2 \) to span \( \text{Col}\; A_2 \).
The basis \( B \) of \( \text{Col} \; A_2 \) is given by: \( B = \{c_1,c_2\} \) or \( B = \left\{\begin{bmatrix} 1 \\ 0 \end{bmatrix} , \begin{bmatrix} 0 \\ 2 \end{bmatrix} \right\} \)
\( \text{Col} \; A_2 = \text{span} \{c_1,c_2\} \)
The basis of \( \text{Col} \; A_2 \) has two vectors and therefore \( \text{Rank} (A_2) = 2 \).



c)
Let \( c_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \), \( c_2 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \), \( c_3 = \begin{bmatrix} -6 \\ 0 \\ 0 \end{bmatrix} \) and \( c_4 = \begin{bmatrix} 0 \\ 0 \\ -9 \end{bmatrix} \) be the columns of matrix \( A_3 \).
Note that \( c_1 \) and \( c_2 \) are independent. However \( c_3 \) and \( c_4 \) depend on \(c_1\) and \( c_2\) as follows: \( c_3 = - 6 c_1 \) and \( c_4 = - \dfrac{9}{2} c_2 \).
Hence the basis \( B \) of \( \text{Col} \; A_3 \) is given by: \( B = \{c_1,c_2\} \) or \( B = \left\{\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} , \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \right\} \)
\( \text{Col} \; A_3 = \text{span} \{c_1,c_2\} \)
The basis of \( \text{Col} \; A_3 \) has two vectors and therefore \( \text{Rank} (A_3) = 2 \).



Example 2
Find the basis of the column space and the rank of matrix
\( A = \begin{bmatrix} 1 & -2 & 0 & 4\\ -1 & 3 & 1 & 0\\ 0 & -1 & -1 & -4 \end{bmatrix} \).

Solution to Example 2
As seen in example 1, the basis of \( Col \; A \) is given by the linearly independent columns of matrix \( A \). One way to find out which columns are linearly independent is to rewrite the given matrix in row echelon form (REF).
Rewrite matrix \( A \) in row echelon form
\( \color{red}{\begin{matrix} \\ R_2+R_1\\ \\ \end{matrix}} \) \( \begin{bmatrix} 1 & -2 & 0 & 4\\ 0 & 1 & 1 & 4\\ 0 & -1 & -1 & -4 \end{bmatrix} \)

\( \color{red}{\begin{matrix} \\ \\ R_3+R_2\\ \end{matrix}} \) \( \begin{bmatrix} \color{blue}1 & -2 & 0 & 4\\ 0 & \color{blue}1 & 1 & 4\\ 0 & 0 & 0 & 0 \end{bmatrix} \)

The basis of \( \text{Col} \; A \) is given by the column in the original matrix corresponding to the columns with pivot (the leading 1 in a row) in the row echelon form obtained.
The first and second column in the reduced matrix has a pivot each and therefore the first and second column in the original matrix form the basis \( B \) of \( \text{Col}\ A \) which is given by
\( B = \left\{\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} , \begin{bmatrix} -2 \\ 3\\ -1 \end{bmatrix} \right\} \)

\( \text{Col}\ A = \text{span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} , \begin{bmatrix} -2 \\ 3\\ -1 \end{bmatrix} \right\} \)
The basis of \( \text{Col} \; A \) has two vectors and therefore \( \text{Rank} (A) = 2 \).



Row Space and Rank of a Matrix

Let \( A \) be an \( m \times n\) matrix.
The row space of matrix \( A \), denoted by \( \text{Row} A \), is the set of all linear combinations of the rows of matrix \( A \). If \( b_1, b_2, ..., b_m \) are the rows of matrix \( A \), then
\[ \text{Row} \; A = \text{span} \; \{b_1, b_2, ..., b_n\} \]

Note that the rows \( \{b_1, b_2, ..., b_m\} \)may not be independent and in what follows we look at examples on how to find the basis of \( \text{Row} \; A \) by selecting the independent rows only.
The rank of matrix \( A \) is the dimension of \( \text{Row} \; A \) which is given by the number of vectors in the basis of \( \text{Row} \; A \).


Example 3
Find the basis of the row space and the rank of each of the matrices:
a) \( A_1 = \begin{bmatrix} 4 & 8 \\ - 2 & - 4 \end{bmatrix} \) , b) \( A_2 = \begin{bmatrix} 1 & 0 & 5\\ 0 & 2 & 7 \end{bmatrix} \) , c) \( A_3 = \begin{bmatrix} 1 & 0 & -6 & 0\\ 0 & 0 & 0 & 0\\ 0 & 2 & 0 & -9 \end{bmatrix} \)


Solution to Example 3
a)
Let \( b_1 = (4,8) \) and \( b_2 = (-2,-4) \) be the rows of matrix \( A_1 \). Note that \( b_2 = - \dfrac{1}{2} b_1 \) and therefore \( b_1 \) and \( b_2 \) are NOT independent. As a result, we need one row only to span \( \text{Row}\; A_1 \).
Hence the basis \( B \) of \( \text{Row} \; A_1 \) is given by: \( B = \{ b_1\} \) or \( B = \{ (4,8) \} \)
\( \text{Row} \; A_1 = \text{span} \{ (4,8) \} \)
The basis of \( \text{Row} \; A_1 \) has one vector and therefore \( \text{Rank} (A_1) = 1 \).

b)
Let \( b_1 = (1,0,5) \) and \( b_2 = (0,2,7) \) be the rows of matrix \( A_2 \). Note that \( b_1 \) and \( b_2 \) are independent. We therefore need both columns to span \( \text{Row} \; A_2 \).
The basis \( B \) of \( \text{Row} \; A_2 \) is given by: \( B = \{ b_1 , b_2 \} \) or \( B = \{ (1,0,5) , (0,2,7) \} \)
\( \text{Row} \; A_2 = \text{span} \{ (1,0,5) , (0,2,7) \} \)
The basis of \( \text{Row} \; A_2 \) has two vectors and therefore \( \text{Rank} (A_2) = 2 \).

c)
Let \( b_1 = (1,0,-6,0) \), \( b_2 = (0,0,0,0) \) and \( b_3 = (0,2,0,-9) \) be the rows of matrix \( A_3 \).
Note that \( b_1 \) and \( b_3 \) are independent; \( b_2 \) is a zero vector that does not contribute in any linear combination and therefore is not included in the basis.
The basis \( B \) of \( \text{Row} \; A_3 \) is given by: \( B = \{ b_1 , b_3 \} \) or \( B = \{ (1,0,-6,0) , (0,2,0,-9) \} \)
\( \text{Row} \; A_3 = \text{span} \{ (1,0,-6,0) , (0,2,0,-9) \} \)
The basis of \( \text{Row} \; A_3 \) has two vectors and therefore \( \text{Rank} (A_3) = 2 \).



Example 4
Find the basis of the row space and the rank of the matrix
\( A = \begin{bmatrix} 1 & -2 & 0 & 4\\ 1 & 1 & -1 & - 8 \\ 2 & -1 & -1 & -4 \\ - 3 & 3 & 1 & 0 \end{bmatrix} \).

Solution to Example 4
We need to find independent rows among the rows of the given matrix. This can be done by rewriting the given matrix to row echelon form.
Rewrite matrix \( A \) in row echelon form
\( \color{red}{\begin{matrix} \\ R_2 - R_1\\ R_3 - 2 R_1\\ R_4 + 3 R_1\\ \end{matrix}} \) \( \begin{bmatrix} 1 & -2 & 0 & 4\\ 0 & 3 & -1 & -12\\ 0 & 3 & -1 & -12\\ 0 & -3 & 1 & 12 \end{bmatrix} \)

\( \color{red}{\begin{matrix} \\ \frac{1}{3} R_2\\ \\ \\ \end{matrix}} \) \( \begin{bmatrix} 1 & -2 & 0 & 4\\ 0 & 1 & -1/3 & - 4\\ 0 & 3 & -1 & -12\\ 0 & -3 & 1 & 12 \end{bmatrix} \)

\( \color{red}{\begin{matrix} \\ \\ R_3 - 3 R_2\\ R_4 + 3 R_2\\ \end{matrix}} \) \( \begin{bmatrix} 1 & -2 & 0 & 4\\ 0 & 1 & -1/3 & - 4\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} \)         (I)

The basis of \( \text{Row} \; A \) is given by the nonzero rows in the row echelon form (matrix I) obtained. Hence
\( \text{Row}\ A = \text{span} \; \left\{ (1 , -2 , 0 , 4) , (0 , 1 , -1/3 , - 4) \right\} \)
The basis of \( \text{Row} \; A \) has two vector and therefore \( \text{Rank} (A) = 2 \).



Steps to Determine the Bases of the Column and Row Spaces of a Matrix and its Rank

If \( A \) is an \( m \times n \) matrix,
Step 1: Rewrite matrix \( A \) in a row echelon form as matrix \( E \)
Step 2: The basis of \( \text{Row} \; A \) is the set of all nonzero rows in matrix \( E \) and \( \text{Row} \; A \) is a subspace of \( \mathbb{R}^n \)
Step 3: The basis of \( \text{Col} \; A \) is the set of all columns in \( A \) corresponding to the columns with pivot in \( E \) and \( \text{Col} A \) is a subspace of \( \mathbb{R}^m \)
Step 4: Rank of A = dim\( \text{Row} \; A \) = dim \( \text{Col} \; A \)



Example 5
Find the basis of the row space, the basis of the column space and the rank of the matrix
\( A = \begin{bmatrix} -1 & 3 & 4 & -2\\ 1 & 2 & -2 & 0\\ 2 & -3 & 1 & 0\\ 0 & 5 & 2 & -2 \end{bmatrix} \).

Solution to Example 5
Step 1: Write matrix \( A \) in row echelon form \( E \)
Note that since writing matrices in row echelon is not the main topic discussed here, we have used a row reduce calculator to obtain the row echelon form \( E \) of the given matrix.
\( E = \begin{bmatrix} 1 & -3 & -4 & 2\\ 0 & 1 & 2/5 & -2/5\\ 0 & 0 & 1 & -14/39\\ 0 & 0 & 0 & 0 \end{bmatrix} \)

Step 2: The basis \(B \) of \( \text{Row} A \) is the set of all nonzero rows in \( E \).
Hence \( B = \{ (1 , -3 , -4 , 2) , (0 , 1 , 2/5 , -2/5) , (0 , 0 , 1 , -14/39) \} \)

Step 3: The basis \( C \) of \( \text{Col} A \) is the set of all columns in \( A \) corresponding to the columns with pivots in \( E \).
The first three columns in \( E \) have a pivot hence the basis is the set of the first three columns in \( A \).
\( C = \left\{ \begin{bmatrix} -1\\ 1\\ 2\\ 0 \end{bmatrix} , \begin{bmatrix} 3\\ 2\\ -3\\ 5 \end{bmatrix} , \begin{bmatrix} 4\\ -2\\ 1\\ 2 \end{bmatrix} \right\} \)

Step 4: The dimensions of \( \text{Row} \; A \) and \( \text{Col} \; A \) are given by
dim \( \text{Row} \; A \) = number of rows in the basis \( B \) of \( \text{Row} \; A \) = 3
dim \( \text{Col} \; A \) = number of vetors in the basis \( C \) of \( \text{Col} \; A \) = 3
Rank of \( A \) = dim \( \text{Row} \; A \) = dim \( \text{Col} \; A \) = 3



Questions with Solution

Given matrix \( A \) and its row echelon form \( E \), determine the column space, the row space and the rank of each matrix.

  1. \(A = \begin{bmatrix} 1 & 0 & -3 \\ 1 & 0 & -2 \end{bmatrix} \) , \(E = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 0 & 1 \end{bmatrix} \)

  2. \(A = \begin{bmatrix} 1 & -1 & 2 & -1\\ 1 & 0 & 4 & 0\\ 2 & -2 & 6 & -4 \\ \end{bmatrix} \) , \(E = \begin{bmatrix} 1 & -1 & 2 & -1\\ 0 & 1 & 2 & 1\\ 0 & 0 & 1 & -1 \\ \end{bmatrix} \)

  3. \(A = \begin{bmatrix} 1 & -1 & 0 & 0 & -1\\ -1 & 2 & 4 & -3 & 2\\ 2 & -2 & 0 & 1 & -3 \\ 3 & -3 & 0 & 0 & -3 \end{bmatrix} \) , \(E = \begin{bmatrix} 1 & -1 & 0 & 0 & -1\\ 0 & 1 & 4 & -3 & 1\\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \)



Solutions to the Above Questions


  1. Basis \( B \) of column space and basis \( C \) of row space are given by:
    \( B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} , \begin{bmatrix} -3 \\ -2\\ \end{bmatrix} \right\} \)
    \( C = \{ (1 , 0 , -3) , (0,0,1) \} \)
    Hence
    \( \text{Col} \; A = \text{span} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} , \begin{bmatrix} -3 \\ -2\\ \end{bmatrix} \right\} \)
    \( \text{Row} \; A = \text{span} \left\{ ( 1 , 0 , -3) , ( 0 , 0 , 1) \right\} \)
    Rank of \( A \) = 2



  2. Basis \( B \) of column space and basis \( C \) of row space are given by:
    \( B = \left\{ \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} , \begin{bmatrix} -1 \\ 0\\ -2 \end{bmatrix} , \begin{bmatrix} 2 \\ 4\\ 6 \end{bmatrix} \right\} \)
    \( C = \{ (1 , -1 , 2 , -1) , (0 , 1 , 2 , 1) , ( 0 , 0 , 1 , -1) \} \)
    Hence
    \( \text{Col} \; A = \text{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} , \begin{bmatrix} -1 \\ 0\\ -2 \end{bmatrix} , \begin{bmatrix} 2 \\ 4\\ 6 \end{bmatrix} \right\} \)
    \( \text{Row} \; A = \text{span} \left\{ (1 , -1 , 2 , -1) , (0 , 1 , 2 , 1) , ( 0 , 0 , 1 , -1) \right\} \)
    Rank of \( A \) = 3



  3. Basis \( B \) of column space and basis \( C \) of row space are given by:
    \( B = \left\{ \begin{bmatrix} -1 \\ -1 \\ 2 \\ 3 \end{bmatrix} , \begin{bmatrix} -1 \\ 2 \\ -2 \\ -3 \end{bmatrix} , \begin{bmatrix} 0\\ -3\\ 1 \\ 0 \end{bmatrix} \right\} \)
    \( C = \{ (1 , -1 , 0 , 0 , -1) , (0 , 1 , 4 , -3 , 1) , ( 0 , 0 , 0 , 1 , -1 ) \} \)
    Hence
    \( \text{Col} \; A = \text{span} \left\{ \begin{bmatrix} -1 \\ -1 \\ 2 \\ 3 \end{bmatrix} , \begin{bmatrix} -1 \\ 2 \\ -2 \\ -3 \end{bmatrix} , \begin{bmatrix} 0\\ -3\\ 1 \\ 0 \end{bmatrix} \right\} \)
    \( \text{Row} \; A = \text{span} \left\{ (1 , -1 , 0 , 0 , -1) , (0 , 1 , 4 , -3 , 1) , ( 0 , 0 , 0 , 1 , -1 ) \right\} \)
    Rank of \( A \) = 3



More References and links

  1. linear algebra
  2. Linear Combinations and Span of Vectors
  3. Linearly Independent and Dependent Vectors
  4. Basis, Coordinates and Dimension of Vector Spaces
  5. Write a Matrix in Row Echelon Form
  6. Row Reduce Augmented Matrices - Calculator
  7. Pivots of a Matrix in Row Echelon Form
  8. Solve a system of linear equations by elimination
  9. elementary matrices