Grade 7 Polynomial Questions: Add and Subtract with Step-by-Step Solutions
Adding, subtracting and simplifying polynomials are an important skills in algebra and maths in general. Grade 7 maths multiple choice questions on adding and subtracting polynomials with answers are presented in this page.
To add polynomials in algebra, we group like terms and simplify.
Example 1: Simplifying Linear Expressions
- Given: \( (2x + 5) + (4x + 6) \)
- Group like terms inside parentheses: \( = (2x + 4x) + (5 + 6) \)
- Simplify: \( = 6x + 11 \)
Example 2: Simplifying Quadratic Expressions
- Given: \( (x^{2} - 6x - 9) + (-5x^{2} + 9x + 2) \)
- Group like terms inside parentheses:\( = (x^{2} - 5x^{2}) + (-6x + 9x) + (-9 + 2) \)
- Simplify \( = -4x^{2} + 3x - 7 \)
Example 3: Subtraction of two Polynomials
When subtracting a second polynomial from a first polynomial, follow these steps:
- First, place the polynomials in parentheses.
- Change the subtraction sign into addition.
- Change the sign of every term in the second polynomial.
- Group like terms (terms with the same variables and exponents).
- Simplify by combining the like terms.
- Given: \( (2xy + x + 5) - (3xy - 2x + 7) \)
- Change the subtraction into addition and change signs of the terms in polynomial: \( = (2xy + x + 5) + (-3xy + 2x - 7) \)
- Group like terms inside parentheses: \( = (2xy - 3xy) + (x + 2x) + (5 - 7) \)
- Simplify: \( = -xy + 3x - 2 \)
Multiple Choice Questions
-
Add the polynomials: \( (9x - 6) + (-5x + 7) \)
- \(14x + 1\)
- \(-4x - 1\)
- \(4x + 1\)
- \(4x + 13\)
-
Subtract the polynomials: \( (9x - 6) - (-5x + 7) \)
- \(14x - 13\)
- \(4x + 1\)
- \(-4x + 13\)
- \(-4x - 13\)
-
Add the polynomials: \( (-x^{2} + 5x + 2) + (6x^{2} + x) \)
- \(7x^{2} + 6x + 2\)
- \(5x^{2} + 6x + 2\)
- \(5x^{2} + 6x\)
- \(7x^{2} + 6x\)
-
Subtract the polynomials: \( (-x^{2} + 5x) - (6x^{2} + x - 2) \)
- \(-5x^{2} + 6x + 2\)
- \(5x^{2} + 6x - 2\)
- \(5x^{2} + 6x\)
- \(-7x^{2} + 4x + 2\)
-
Add the polynomials: \( (-7x^{2}y + xy + 3x + 2) + (5x^{2}y - 5xy - 6x - 7) \)
- \(-2x^{2}y - 4xy - 3x - 5\)
- \(2x^{2}y + 4xy - 3x - 5\)
- \(-2x^{2}y - 4xy + 3x + 5\)
- \(2x^{2}y + 4xy + 3x + 5\)
-
Subtract the polynomials: \( (-7x^{2}y + xy + 3x + 2) - (5x^{2}y - 5xy - 6x - 7) \)
- \(-2x^{2}y - 4xy - 2x - 5\)
- \(-12x^{2}y + 6xy + 9x + 9\)
- \(-12x^{2}y - 6xy - 9x - 9\)
- \(12x^{2}y + 6xy + 9x + 9\)
-
Add the polynomials: \( (xy + 3x + 2) + (3x^{2} + y) \)
- \(3x^{2} + 4xy + 2\)
- \(3x^{2} + 2xy + 3x + 2\)
- \(3x^{2} + xy + 3x + y + 2\)
- \(3x^{2} + 5xy + 2\)
-
Subtract the polynomials: \( (xy + 3x + 2) - (3x^{2} + y) \)
- \(3x^{2} + 4xy + 2\)
- \(3x^{2} + 4xy + 2\)
- \(-3x^{2} + 3x - y + 2\)
- \(-3x^{2} + xy + 3x - y + 2\)
-
Add the polynomials: \( (x^{2}y + 3x + 2) + (2 + 2xy^{2} + 3x) \)
- \(x^{2}y + 2xy^{2} + 6x + 4\)
- \(3x^{2}y + 6x + 4\)
- \(3xy^{2} + 6x + 4\)
- \(3x^{2}y^{2} + 6x + 4\)
-
Subtract the polynomials: \( (x^{2}y + 3x + 2) - (2 + xy^{2} + 3x) \)
- \(0\)
- \(-2x^{2}y\)
- \(x^{2}y - xy^{2}\)
- \(x^{2}y + xy^{2}\)
Answers to the Above Questions
- C
- A
- B
- D
- A
- B
- C
- D
- A
- C
Links and References