Complete the Square Calculator

This online calculator completes the square of a quadratic expression and shows the result in vertex form.

Completing the Square: Explanation

Completing the square rewrites a quadratic expression of the form

\[ ax^2 + bx + c \]

into the vertex form

\[ a(x + h)^2 + k \]

Step 1: Factor the coefficient of \(x^2\)

\[ ax^2 + bx + c = a\left(x^2 + \frac{b}{a}x\right) + c \]

Step 2: Add and subtract \(\left(\frac{b}{2a}\right)^2\)

\[ = a\left(x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 \right) + c \]

Step 3: Group the perfect square

\[ = a\left(x + \frac{b}{2a}\right)^2 - a\left(\frac{b}{2a}\right)^2 + c \]

Therefore,

\[ a(x + h)^2 + k \]

where \( h = \frac{b}{2a} \) and \( k = c - a\left(\frac{b}{2a}\right)^2 \).

Example: Completing the Square

Complete the square for:

\[ 2x^2 + 6x + \frac{5}{2} \]

Factor the coefficient of \(x^2\):

\[ = 2(x^2 + 3x) + \frac{5}{2} \]

Add and subtract \(\left(\frac{3}{2}\right)^2\):

\[ = 2\left(x^2 + 3x + \left(\frac{3}{2}\right)^2 - \left(\frac{3}{2}\right)^2 \right) + \frac{5}{2} \]

Group the perfect square:

\[ = 2\left(x + \frac{3}{2}\right)^2 - 2 \]

Complete the Square Calculator

Enter the coefficients \(a\), \(b\), and \(c\) (integers, fractions, or decimals), then press Complete Square.

\(x^2 +\) \(x +\)

Applications of Completing the Square

1. Solving Quadratic Equations

\[ 2x^2 + 6x + \frac{5}{2} = 0 \] \[ 2\left(x + \frac{3}{2}\right)^2 - 2 = 0 \] \[ (x + \frac{3}{2})^2 = 1 \] \[ x = -\frac{3}{2} \pm 1 \]

Solutions: \(x_1 = -\frac{5}{2}\), \(x_2 = -\frac{1}{2}\)

2. Finding the Vertex and x-Intercepts

\[ y = 2(x + \frac{3}{2})^2 - 2 \]

Vertex: \((-\frac{3}{2}, -2)\)

Graph of y = 2x² + 6x + 5/2 showing vertex and x-intercepts

3. Applications in Calculus

Completing the square is frequently used when evaluating integrals involving quadratic expressions .

More References