This online calculator completes the square of a quadratic expression and shows the result in vertex form.
Completing the square rewrites a quadratic expression of the form
\[ ax^2 + bx + c \]into the vertex form
\[ a(x + h)^2 + k \]Therefore,
\[ a(x + h)^2 + k \]where \( h = \frac{b}{2a} \) and \( k = c - a\left(\frac{b}{2a}\right)^2 \).
Complete the square for:
\[ 2x^2 + 6x + \frac{5}{2} \]Factor the coefficient of \(x^2\):
\[ = 2(x^2 + 3x) + \frac{5}{2} \]Add and subtract \(\left(\frac{3}{2}\right)^2\):
\[ = 2\left(x^2 + 3x + \left(\frac{3}{2}\right)^2 - \left(\frac{3}{2}\right)^2 \right) + \frac{5}{2} \]Group the perfect square:
\[ = 2\left(x + \frac{3}{2}\right)^2 - 2 \]Enter the coefficients \(a\), \(b\), and \(c\) (integers, fractions, or decimals), then press Complete Square.
Solutions: \(x_1 = -\frac{5}{2}\), \(x_2 = -\frac{1}{2}\)
Vertex: \((-\frac{3}{2}, -2)\)
Completing the square is frequently used when evaluating integrals involving quadratic expressions .