The powerful method of substitution is used to solve different types of equations.
Solve the equation:
\(x - 3\sqrt{x} = -2\)
\[u^2 - 3u = -2\]
\[u^2 - 3u + 2 = 0\]
\[u = 1 \quad \text{or} \quad u = 2\]
\[\sqrt{x} = 1 \quad \Rightarrow \quad x = 1\]
\[\sqrt{x} = 2 \quad \Rightarrow \quad x = 4\]
Solve the equation:
\(\frac{1}{(x-1)^2} - \frac{1}{x-1} - 2 = 0\)
\[u^2 - u - 2 = 0\]
\[u = -1 \quad \text{or} \quad u = 2\]
\[\frac{1}{x-1} = -1 \quad \Rightarrow \quad x = 0\]
\[\frac{1}{x-1} = 2 \quad \Rightarrow \quad x = \frac{3}{2}\]
Solve the equation:
\(-(x+3)^6 + 4(x+3)^3 = -21\)
\[-u^2 + 4u = -21 \quad \Rightarrow \quad u^2 - 4u - 21 = 0\]
\[u = -3 \quad \text{or} \quad u = 7\]
\[(x+3)^3 = -3 \quad \Rightarrow \quad x = -3 - \sqrt[3]{3}\]
\[(x+3)^3 = 7 \quad \Rightarrow \quad x = -3 + \sqrt[3]{7}\]
Solve the equation:
\(3e^{2x} - e^x - 2 = 0\)
\[3u^2 - u - 2 = 0\]
\[u = 1 \quad \text{or} \quad u = -\frac{2}{3}\]
\[e^x = 1 \quad \Rightarrow \quad x = 0\]
\[e^x = -\frac{2}{3} \quad \text{has no solution since } e^x > 0\]
Solve the equation in the interval \([0, 2\pi)\):
\(\sin^2 x - 4\sin x - 5 = 0\)
\[u^2 - 4u - 5 = 0\]
\[u = -1 \quad \text{or} \quad u = 5\]
\[\sin x = -1 \quad \Rightarrow \quad x = \frac{3\pi}{2}\]
\[\sin x = 5 \quad \text{has no solution since } -1 \le \sin x \le 1\]