Triangle Inscribed in a Circle - Problem With Solution

Inscribed right triangle problem with detailed solution.

Problem

In the figure below, triangle \(ABC\) is inscribed inside the circle with center \(O\) and radius \(r = 10\) cm. Find the lengths of \(AB\) and \(CB\) so that the area of the shaded region is twice the area of the triangle.

Inscribed triangle problem

Solution

Since \(O\) lies on \(AC\), \(AC\) is a diameter of the circle. By Thales's theorem, triangle \(ABC\) has a right angle at \(B\).

Let:

We require \(A_s = 2 A_t\).

Inscribed triangle solution

The combined area of the triangle and shaded region equals half the circle's area: \[ A_t + A_s = \frac{1}{2} \pi r^2 = \frac{1}{2} \pi (10)^2 = 50\pi. \] Substituting \(A_s = 2A_t\): \[ A_t + 2A_t = 50\pi \quad \Rightarrow \quad 3A_t = 50\pi \quad \Rightarrow \quad A_t = \frac{50\pi}{3}. \]

Using angle \(A\) (internal to the triangle): \[ \sin A = \frac{CB}{AC} = \frac{CB}{20} \quad \Rightarrow \quad CB = 20 \sin A, \] \[ \cos A = \frac{AB}{AC} = \frac{AB}{20} \quad \Rightarrow \quad AB = 20 \cos A. \] The area \(A_t\) can also be expressed as: \[ A_t = \frac{1}{2} \cdot AB \cdot CB = \frac{1}{2} (20 \cos A)(20 \sin A) = 200 \cos A \sin A. \] Using the identity \(\sin 2A = 2 \sin A \cos A\): \[ A_t = 100 \sin 2A. \] Equating with the earlier expression: \[ 100 \sin 2A = \frac{50\pi}{3} \quad \Rightarrow \quad \sin 2A = \frac{\pi}{6} \approx 0.5236. \]

Solving for \(2A\): \[ 2A = \arcsin(0.5236) \approx 31.6^\circ \quad \text{or} \quad 2A = 180^\circ - 31.6^\circ = 148.4^\circ. \] Thus: \[ A \approx 15.8^\circ \quad \text{or} \quad A \approx 74.2^\circ. \]

First solution (\(A \approx 15.8^\circ\)): \[ AB = 20 \cos 15.8^\circ \approx 19.24 \text{ cm}, \quad CB = 20 \sin 15.8^\circ \approx 5.45 \text{ cm}. \] Second solution (\(A \approx 74.2^\circ\)): \[ AB = 20 \cos 74.2^\circ \approx 5.45 \text{ cm}, \quad CB = 20 \sin 74.2^\circ \approx 19.24 \text{ cm}. \] The two solutions correspond to two congruent right triangles (the roles of \(AB\) and \(CB\) are swapped).