Area of a Regular Octagon - Problem with Solution

Problem Statement

Given a regular octagon with distance \(10\) cm between two opposite sides (span), find:

  1. The length of one side \(x\)
  2. The perimeter \(P\)
  3. The area \(A\)

Regular octagon with span of 10 cm

Solution

1. Interior Angle

A regular octagon has \(8\) sides. The measure of one interior angle is: \[ \frac{(8-2) \times 180^\circ}{8} = 135^\circ \]

2. Analyze the Isosceles Right Triangle

Geometric construction showing right triangle

Consider triangle \(ABC\) where \(AC \perp BC\). Since the interior angle is \(135^\circ\), angle \(ABC\) is: \[ 135^\circ - 90^\circ = 45^\circ \] Thus, triangle \(ABC\) is an isosceles right triangle.

3. Establish Equations

Let \(x\) be the side length of the octagon and \(y\) be the equal legs of triangle \(ABC\). The span of \(10\) cm equals \(x + 2y\): \[ x + 2y = 10 \quad \text{(1)} \] By the Pythagorean theorem in triangle \(ABC\): \[ x^2 = y^2 + y^2 = 2y^2 \quad \text{(2)} \]

4. Solve for Side Length \(x\)

From equation (2): \( y = \frac{x}{\sqrt{2}} \).
Substitute into equation (1): \[ x + 2\left(\frac{x}{\sqrt{2}}\right) = 10 \] \[ x + \sqrt{2}x = 10 \] \[ x(1 + \sqrt{2}) = 10 \] \[ x = \frac{10}{1 + \sqrt{2}} \ \text{cm} \] Rationalizing the denominator: \[ x = \frac{10}{1 + \sqrt{2}} \cdot \frac{1 - \sqrt{2}}{1 - \sqrt{2}} = 10(\sqrt{2} - 1) \ \text{cm} \] Numerically: \( x \approx 4.142 \ \text{cm} \)

5. Calculate Perimeter \(P\)

\[ P = 8x = 8 \times \frac{10}{1 + \sqrt{2}} = \frac{80}{1 + \sqrt{2}} \ \text{cm} \] Rationalized form: \[ P = 80(\sqrt{2} - 1) \ \text{cm} \quad (\approx 33.137 \ \text{cm}) \]

6. Calculate Area \(A\)

Method: Subtract areas of four right triangles from the area of the bounding square of side \(10\) cm. \[ A = 10^2 - 4 \times \left( \frac{1}{2} y^2 \right) = 100 - 2y^2 \] From equation (2): \( y^2 = \frac{x^2}{2} \). Thus: \[ A = 100 - 2 \left( \frac{x^2}{2} \right) = 100 - x^2 \] Substitute \( x = 10(\sqrt{2} - 1) \): \[ x^2 = 100(3 - 2\sqrt{2}) \] \[ A = 100 - 100(3 - 2\sqrt{2}) = 100(1 - 3 + 2\sqrt{2}) = 200(\sqrt{2} - 1) \ \text{cm}^2 \] Numerically: \( A \approx 82.842 \ \text{cm}^2 \)

Final Answers

  1. Side length: \( x = 10(\sqrt{2} - 1) \ \text{cm} \approx 4.142 \ \text{cm} \)
  2. Perimeter: \( P = 80(\sqrt{2} - 1) \ \text{cm} \approx 33.137 \ \text{cm} \)
  3. Area: \( A = 200(\sqrt{2} - 1) \ \text{cm}^2 \approx 82.842 \ \text{cm}^2 \)

General Formulas (for any span \( S \))

More Geometry Resources

Geometry Tutorials, Problems and Interactive Applets