Detailed parallelogram problems with step-by-step solutions covering area, angles, side lengths, and coordinate geometry.
Prove that quadrilateral ABCD with vertices \( A(-2, 0) \), \( B(2, 4) \), \( C(4, 1) \), and \( D(0, -3) \) is a parallelogram.
Given side \( AB = 15 \) ft, angle \( D = 135^\circ \), and area \( = 1000 \) ft², find height \( h \) and side \( BC \).
In parallelogram ABCD, BB' bisects angle B and CC' bisects angle C. Given \( BC = 10 \) m, find lengths \( x \) and \( y \).
Find all internal angles of a parallelogram with sides 20 ft and 30 ft and area 300 ft².
Approach: Verify two pairs of parallel and congruent sides.
Slope calculations:
Distance calculations:
Conclusion: \( AB \parallel CD \) (equal slopes) and \( AB = CD \). \( BC \parallel DA \) (equal slopes) and \( BC = DA \). Thus, ABCD is a parallelogram.
Step 1: Find angle A
Consecutive angles are supplementary: \( \angle A = 180^\circ - 135^\circ = 45^\circ \)
Step 2: Calculate height h
Using right triangle ABB': \( \sin 45^\circ = \frac{h}{15} \)
\( h = 15 \times \frac{\sqrt{2}}{2} = \frac{15\sqrt{2}}{2} \) ft
Step 3: Find side BC
Area formula: \( A = BC \times h \)
\( 1000 = BC \times \frac{15\sqrt{2}}{2} \)
\( BC = \frac{1000 \times 2}{15\sqrt{2}} = \frac{2000}{15\sqrt{2}} \approx 94.28 \) ft (rounded)
Step 1: Analyze angles
In triangle BOC: \( \angle BCO = \frac{1}{2}\angle C \), \( \angle CBO = \frac{1}{2}\angle B \)
Since \( \angle B + \angle C = 180^\circ \), then \( \angle BCO + \angle CBO = 90^\circ \)
Thus \( \angle BOC = 90^\circ \) (triangle angle sum).
Step 2: Find angle BCO
In parallelogram, \( \angle C = \angle A = 60^\circ \) (from diagram)
\( \angle BCO = \frac{60^\circ}{2} = 30^\circ \)
Step 3: Calculate x and y
In right triangle BOC:
Step 1: Area relationship
Area of parallelogram = \( 2 \times \) area of triangle ABC
Area of triangle ABC = \( \frac{1}{2} \times 30 \times 20 \times \sin(\angle B) \)
Thus: \( 300 = 2 \times \frac{1}{2} \times 30 \times 20 \times \sin(\angle B) \)
Step 2: Solve for angle B
\( 300 = 600 \times \sin(\angle B) \)
\( \sin(\angle B) = 0.5 \)
\( \angle B = 150^\circ \) (since \( \sin 30^\circ = \sin 150^\circ = 0.5 \), and angle B > 90° in parallelogram)
Step 3: Find all angles
More Geometry Resources: Geometry Tutorials and Interactive Problems