Rotation of Geometric Shapes

What is Rotation?

Rotation is a transformation that turns a shape around a fixed point called the center of rotation through a specific angle and direction.

Common Rotation Rules (around the origin)

Let \( (x,y) \) be the coordinates of a point. The coordinates \( (x',y') \) after rotation are given by:

Rotation Coordinate Rule Matrix Form
\( 90^\circ \) CCW \( (x, y) \rightarrow (x' = -y, y' = x) \) \( \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \)
\( 180^\circ \) \( (x, y) \rightarrow (x' = -x, y' = -y) \) \( \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \)
\( 270^\circ \) CCW \( (x, y) \rightarrow (x' = y, y' = -x) \) \( \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \)
\( 360^\circ \) \( (x, y) \rightarrow (x' = x, y' = y) \) \( \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \)

For a general rotation by angle \( \theta \):

\[ \begin{aligned} x' &= x \cos\theta - y \sin\theta \\ y' &= x \sin\theta + y \cos\theta \end{aligned} \]

Interactive Activity 1: Rotate Your Own Points

Click to add points. Use the slider or angle input to rotate them. Points are labeled A, B, C (red) and their rotated images A', B', C' (blue).

degrees

Interactive Activity 2: Rotate a Triangle

degrees

Practice Problems

Problem 1

Point \( P(3, 4) \) is rotated \( 90^\circ \) counterclockwise about the origin. Find the coordinates of \( P' \).

Problem 2

Triangle \( ABC \) has vertices \( A(1, 1) \), \( B(4, 1) \), and \( C(2, 5) \). Find the vertices after a \( 180^\circ \) rotation about the origin.

Problem 3

Point \( Q(-2, 5) \) is rotated \( 270^\circ \) counterclockwise about the origin. Find the coordinates of \( Q' \).

Solutions

Solution to Problem 1

Using the \( 90^\circ \) CCW rule: \( (x, y) \rightarrow (-y, x) \)

\[ \begin{aligned} P(3, 4) &\rightarrow P'(-4, 3) \\ x' &= -y = -4 \\ y' &= x = 3 \end{aligned} \]

Answer: \( P'(-4, 3) \)

Solution to Problem 2

Using the \( 180^\circ \) rotation rule: \( (x, y) \rightarrow (-x, -y) \)

\[ \begin{aligned} A(1, 1) &\rightarrow A'(-1, -1) \\ B(4, 1) &\rightarrow B'(-4, -1) \\ C(2, 5) &\rightarrow C'(-2, -5) \end{aligned} \]

Answer: \( A'(-1, -1) \), \( B'(-4, -1) \), \( C'(-2, -5) \)

Solution to Problem 3

Using the \( 270^\circ \) CCW rule: \( (x, y) \rightarrow (y, -x) \)

\[ \begin{aligned} Q(-2, 5) &\rightarrow Q'(5, 2) \\ x' &= y = 5 \\ y' &= -x = -(-2) = 2 \end{aligned} \]

Answer: \( Q'(5, 2) \)