Kite Calculator

An online calculator to calculate the sides, area, perimeter and angles in a kite given its diagonals and distance \( AO \).
kite
We define the length of segments \( AC \), \( BD \) and \( AO \) using small letters as follows: \( AC = e\), \( BD = f \) and \( AO = g \).
The
kite formulas are first given.
Area \( A \) of Kite: \[ \displaystyle A = \dfrac{f \cdot e}{2} \]
Sides \( a \) and \( b \): \[ \displaystyle a = b = \sqrt{ \left(\dfrac{f}{2}\right)^2 + (e-g)^2} \]
Sides \( c \) and \( d \): \[ \displaystyle d = c = \sqrt{ \left(\dfrac{f}{2}\right)^2 + g^2} \]
Perimeter: \( \displaystyle p = 2 a + 2 d \)
Angle \( \alpha \): \[ \displaystyle \alpha = 2 \arctan (\dfrac{f}{2g}) \]
Angle\( \gamma \) : \[ \displaystyle \gamma = 2 \arctan \left(\dfrac{f}{2(e-g)}\right) \]
Angle \( \beta \): \[ \displaystyle \beta = 180 - \dfrac{\gamma}{2} - \dfrac{\alpha}{2} \]

Use of the Kite Calculator

Enter the lengths \( e \) of \( AC \), the length \( f \) of \( BD \) and the length \( g \) of \( AO \) as positive real numbers such that \( g \lt e \).

Axis Length \( AC\): \( \quad e \) =
Diagonal Length \( BD\): \( \quad f \) =
\( AO\): \( \quad g \) =
Number of Decimls =

Outputs











More References and links

Kite Questions with Solutions .
Geometry Calculators
Geometry Tutorials, Problems and Interactive Applets

Popular Pages


More Info