Inverse Trigonometric Functions: Solved Problems & Examples

This tutorial provides detailed solutions to inverse trigonometric functions problems. Exercises with answers are included. We first review key theorems and properties of inverse trigonometric functions.

Key Theorems and Properties

  1. \( y = \arcsin x \ \Leftrightarrow\ \sin y = x \)

    with \(\ -1 \le x \le 1 \ \) and \(\ -\frac{\pi}{2} \le y \le \frac{\pi}{2} \).

  2. \( y = \arccos x \ \Leftrightarrow\ \cos y = x \)

    with \(\ -1 \le x \le 1 \ \) and \(\ 0 \le y \le \pi \).

  3. \( y = \arctan x \ \Leftrightarrow\ \tan y = x \)

    with \(\ -\frac{\pi}{2} < y < \frac{\pi}{2} \).

Question 1: Find Exact Values

Evaluate the following:

  1. \( \arcsin\left(-\frac{\sqrt{3}}{2}\right) \)
  2. \( \arctan\left(-1\right) \)
  3. \( \arccos\left(-\frac{1}{2}\right) \)

Solution to Question 1

1. \( \arcsin\left(-\frac{\sqrt{3}}{2}\right) \)

Let \( y = \arcsin\left(-\frac{\sqrt{3}}{2}\right) \). By Theorem 1:

\[ \sin y = -\frac{\sqrt{3}}{2}, \quad -\frac{\pi}{2} \le y \le \frac{\pi}{2} \]

From special angles, \( \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \).

Using \( \sin(-x) = -\sin x \):

\[ \sin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2} \]

Comparing with \( \sin y = -\frac{\sqrt{3}}{2} \), we conclude:

\[ y = -\frac{\pi}{3} \]

2. \( \arctan\left(-1\right) \)

Let \( y = \arctan\left(-1\right) \). By Theorem 3:

\[ \tan y = -1, \quad -\frac{\pi}{2} < y < \frac{\pi}{2} \]

From special angles, \( \tan\left(\frac{\pi}{4}\right) = 1 \).

Using \( \tan(-x) = -\tan x \):

\[ \tan\left(-\frac{\pi}{4}\right) = -1 \]

Comparing with \( \tan y = -1 \), we obtain:

\[ y = -\frac{\pi}{4} \]

3. \( \arccos\left(-\frac{1}{2}\right) \)

Let \( y = \arccos\left(-\frac{1}{2}\right) \). By Theorem 2:

\[ \cos y = -\frac{1}{2}, \quad 0 \le y \le \pi \]

From special angles, \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \).

Using \( \cos(\pi - x) = -\cos x \):

\[ \cos\left(\pi - \frac{\pi}{3}\right) = -\frac{1}{2} \]

Comparing with \( \cos y = -\frac{1}{2} \), we obtain:

\[ y = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \]

Question 2: Simplify \( \cos(\arcsin x) \)

Solution to Question 2

Let \( z = \cos(\arcsin x) \) and \( y = \arcsin x \), so \( z = \cos y \).

By Theorem 1, \( y = \arcsin x \) is equivalent to:

\[ \sin y = x, \quad -\frac{\pi}{2} \le y \le \frac{\pi}{2} \]

Using the Pythagorean identity:

\[ \sin^2 y + \cos^2 y = 1 \]

Substitute \( \sin y = x \) and solve for \( \cos y \):

\[ \cos y = \pm \sqrt{1 - x^2} \]

Since \( -\frac{\pi}{2} \le y \le \frac{\pi}{2} \), \( \cos y \) is non-negative.

\[ z = \cos(\arcsin x) = \sqrt{1 - x^2} \]

Question 3: Simplify \( \csc(\arctan x) \)

Solution to Question 3

Let \( z = \csc(\arctan x) \) and \( y = \arctan x \), so \( z = \csc y = \frac{1}{\sin y} \).

By Theorem 3, \( y = \arctan x \) is equivalent to:

\[ \tan y = x, \quad -\frac{\pi}{2} < y < \frac{\pi}{2} \]

We know:

\[ \tan^2 y = \frac{\sin^2 y}{\cos^2 y} = \frac{\sin^2 y}{1 - \sin^2 y} \]

Solve for \( \sin y \):

\[ \sin y = \pm \sqrt{ \frac{\tan^2 y}{1 + \tan^2 y} } \]

For \( -\frac{\pi}{2} < y < \frac{\pi}{2} \), \( \sin y \) and \( \tan y \) have the same sign. Therefore:

\[ \sin y = \frac{\tan y}{\sqrt{1 + \tan^2 y}} \]

Substitute \( \tan y = x \):

\[ \sin y = \frac{x}{\sqrt{1 + x^2}} \]

Thus:

\[ z = \csc(\arctan x) = \frac{1}{\sin y} = \frac{\sqrt{1 + x^2}}{x} \]

Question 4: Evaluate Composite Functions

Evaluate the following:

  1. \( \arcsin\left( \sin \left( \frac{7\pi}{4} \right) \right) \)
  2. \( \arccos\left( \cos \left( \frac{4\pi}{3} \right) \right) \)

Solution to Question 4

1. \( \arcsin\left( \sin \left( \frac{7\pi}{4} \right) \right) \)

Recall: \( \arcsin(\sin y) = y \) only for \( -\frac{\pi}{2} \le y \le \frac{\pi}{2} \).

Since \( \sin\left(\frac{7\pi}{4}\right) = \sin\left(-\frac{\pi}{4}\right) \), and \( -\frac{\pi}{4} \) is in the required range:

\[ \arcsin\left( \sin \left( \frac{7\pi}{4} \right) \right) = \arcsin\left( \sin \left( -\frac{\pi}{4} \right) \right) = -\frac{\pi}{4} \]

2. \( \arccos\left( \cos \left( \frac{4\pi}{3} \right) \right) \)

Recall: \( \arccos(\cos y) = y \) only for \( 0 \le y \le \pi \).

Since \( \cos\left(\frac{4\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right) \), and \( \frac{2\pi}{3} \) is in the required range:

\[ \arccos\left( \cos \left( \frac{4\pi}{3} \right) \right) = \arccos\left( \cos \left( \frac{2\pi}{3} \right) \right) = \frac{2\pi}{3} \]

Practice Exercises

  1. Evaluate \( \arcsin\left( \sin \left( \frac{13\pi}{4} \right) \right) \)
  2. Simplify \( \sec(\arctan x) \)
  3. Find the exact value of \( \arccos\left( -\frac{\sqrt{3}}{2} \right) \)

Answers to Exercises

  1. \( -\frac{\pi}{4} \)
  2. \( \sqrt{x^2 + 1} \)
  3. \( \frac{5\pi}{6} \)

More Resources on Inverse Trigonometric Functions