Tables of Formulas for Derivatives

A table of formulas for the first derivatives of common functions used in mathematics is presented.

\( \)\( \)\( \)\( \)
\( f(x) \) \( \dfrac{d f(x)}{dx}\)
\( x^n \) \( n \; x^{n-1} \)
\( e^x \) \( e^x \)
\( \ln (x) \) \( \dfrac{1}{x} \)
\( \sin x \) \( \cos x \)
\( \cos x \) \( - \sin x \)
\( \tan x \) \( \sec^2 (x) \)
\( \cot x \) \( - \csc^2(x) \)
\( \sec x \) \( \sec x \tan x \)
\( \csc x \) \( - \csc x \cot x \)
\( \arcsin x \) \( \dfrac{1}{\sqrt{1-x^2}} \)
\( \arccos x \) \( \dfrac{ - 1}{\sqrt{1-x^2}} \)
\( \arctan x \) \( \dfrac{ 1}{1+x^2} \)
\( \sinh x \) \( \cosh x \)
\( \cosh x \) \( \sinh x \)
\( \tanh x \) \( \text{sech}^2( x) \)
\( \coth x \) \( - \text{csch}^2 x \)
\( \text{sech} \; x \) \( - \text{sech} \; x \tanh x \)
\( \text{csch} \; x \) \( - \text{csch}\; x \coth x \)
\( \text{arcsinh} \; x \) \( \dfrac{1}{\sqrt{x^2+1}} \)
\( \text{arccosh} \; x \) \( \dfrac{1}{\sqrt{x^2-1}} \)
\( \text{arctanh} \; x \) \( \dfrac{1}{1-x^2} \)

More on differentiation and derivatives and
  • Find Derivatives of Rational Functions - Calculators
  • privacy policy