Improper Integrals with Infinite Intervals

\( \) \( \)\( \)\( \)\( \)\( \)

Define and calculate improper integrals with infinite limits of integration through examples with detailed solutions and explanations. Also more exercises with solutions are included.



Definition of Improper Integrals with Infinite Intervals [1] [2]

Consider 3 types of integral with infinite interval(s)

1 - The Upper Limit of the Integral is Infinite


An integral of the form \( \displaystyle \int_a^{\infty} f(x) \; dx \) exists and is convergent if \[ \displaystyle \int_a^{b} f(x) \; dx \quad \text{exists for all} \quad b \ge a \] and the limit \[ \lim_{b \to \infty} \displaystyle \int_a^{b} f(x) \; dx \] exists and is finite.
We then write
\[ \boxed{ \displaystyle \int_a^{\infty} f(x) \; dx = \lim_{b \to \infty} \displaystyle \int_a^{b} f(x) \; dx } \]

2 - The Lower Limit of the Integral is Infinite


An integral of the form \( \displaystyle \int_{-\infty}^a f(x) \; dx \) exists and is convergent if \[ \displaystyle \int_b^{a} f(x) \; dx \quad \text{exists for all} \quad b \le a \] and the limit \[ \lim_{b \to -\infty} \displaystyle \int_b^{a} f(x) \; dx \] exists and is finite.
We then write
\[ \boxed{ \displaystyle \int_{-\infty}^a f(x) \; dx = \lim_{b \to -\infty} \displaystyle \int_b^{a} f(x) } \]

3 - Both Limits of the Integral are Infinite


An integral of the form \( \displaystyle \int_{-\infty}^{\infty} f(x) \; dx \) exists and is convergent if both \( \displaystyle \int_{-\infty}^a f(x) \; dx \) and \( \displaystyle \int_a^{\infty} f(x) \; dx \) are convergent
We then write
\[ \boxed{ \displaystyle \int_{-\infty}^{\infty} f(x) \; dx = \displaystyle \int_{-\infty}^a f(x) \; dx + \displaystyle \int_a^{\infty} f(x) \; dx } \]
Note that the interval of integration is split at \( x = a \) and hence we end up with the sum of two integrals with each integral having one infinite limit only.



Examples and Their Solutions

Example 1
Evaluate the integral given below if possible. \[ \displaystyle \int_1^{\infty}\; x \; dx \]



Example 2
Is the integral below convergent or divergent? Evaluate it if it is convergent. \[ \displaystyle \int_1^{\infty}\; \dfrac{1}{x^2} \; dx \]



Example 3
Evaluate the integral given below if possible. \[ \displaystyle \int_{-\infty}^0\; \dfrac{1}{\sqrt{2-3x}} \; dx \]



Example 4
Evaluate the integral given below if possible. \[ \displaystyle \int_{-\infty}^{\infty}\; x^5 e^{-x^6} \; dx \]



Example 5
For what values of \( p \) is the integral \[ \displaystyle \int_{e}^{\infty}\; \dfrac{1}{x\:\left(\ln\:x\right)^{p+1}} \; dx \] convergent? Find its value in terms of \( p \) .



Exercises

Evaluate each of the following integrals if possible.

  1. \( \displaystyle \int _1^{\infty } \; \dfrac{1}{\left(4x+1\right)^2} \; dx \)

  2. \( \displaystyle \int _{-\infty }^{\infty } \; \dfrac{x}{1+x^2} \; dx \)

  3. \( \displaystyle \int _{-\infty }^{-1} \; e^{2x} \; dx \)

  4. \( \displaystyle \int _{-\infty }^{\infty }\dfrac{7\:x^2}{3+x^6} \; dx \)

  5. \( \displaystyle \int _0^{\infty }\dfrac{e^{2x}}{e^{4x}+3} \; dx \)





More References and links

  1. University Calculus - Early Transcendental - Joel Hass, Maurice D. Weir, George B. Thomas, Jr., Christopher Heil - ISBN-13 : 978-0134995540
  2. Calculus - Early Transcendental - James Stewart - ISBN-13: 978-0-495-01166-8
  3. integrals and their applications in calculus.