Integral of \( \sin^2(x) \cos^3(x) \)

\( \) \( \)\( \)\( \)\( \)\( \)

Evaluate the integral \[ \int \sin^2(x) \cos^3(x) \; dx \] Rewrite as \[ = \int \sin^2(x) \cos^2(x) \cos x \; dx \]
Use
trigonometric identity \( \cos^2 x = 1 - \sin^2 x \) and substitute
\[ = \int \sin^2(x) (1 - \sin^2(x)) \cos x \; dx \]
Expand the integrand \[ = \int (\sin^2(x) - \sin^4(x)) \cos x \; dx \] Use
Integration by Substitution : \( u = sin x \) so that \( du = \cos x \; dx \) \[ = \int (u^2 - u^4) \; du \] Use the common integral \( \int u^n du = \dfrac{1}{n+1} u^{n+1}+ c\) to evaluate the above integral \[ \dfrac{1}{3} u^3 - \dfrac{1}{5} u^5 + c \] Substitute back \( u = sin x \) to obtain the final answer \[ \boxed { \int \sin^2(x) \cos^3(x) \; dx = \dfrac{1}{3} \sin^2 (x) - \dfrac{1}{5} \sin^5 (x) + c } \]



More References and Links

  1. Table of Integral Formulas
  2. University Calculus - Early Transcendental - Joel Hass, Maurice D. Weir, George B. Thomas, Jr., Christopher Heil - ISBN-13 : 978-0134995540
  3. Calculus - Gilbert Strang - MIT - ISBN-13 : 978-0961408824
  4. Calculus - Early Transcendental - James Stewart - ISBN-13: 978-0-495-01166-8

Search

{ezoic-ad-1}

{ez_footer_ads}