Tutorials with examples and detailed solutions and exercises with answers on how to use the powerful technique of integration by substitution to find integrals.
Solution to Example 1:
Let \( u = ax + b \) which gives \( \dfrac{du}{dx} = a \) or \( dx = \dfrac{1}{a} du \). The substitution helps in computing the integral as follows
\[
\begin{align*}
\int \sin(ax + b) , dx
&= \frac{1}{a} \int \sin(u) , du \\
&= -\frac{1}{a} \cos(u) + C \\
&= -\frac{1}{a} \cos(ax + b) + C
\end{align*}
\]
Solution to Example 2:
Let \( u = 3x - 2 \) which gives \( \dfrac{du}{dx} = 3 \) or \( dx = \dfrac{1}{3} du \). Hence
\[
\begin{align*}
\int e^{3x - 2} dx
&= \int e^{u} \cdot \frac{1}{3} du \\
&= \frac{1}{3} e^{u} \\
&= \frac{1}{3} e^{3x - 2} + C
\end{align*}
\]
Solution to Example 3:
Let \( u = 2x^2 + 5 \) which gives \( \dfrac{du}{dx} = 4x \), \( du = 4x \, dx \), \( \dfrac{1}{4} du = x \, dx \). The substitution gives
\[
\begin{align*}
\int x (2x^2 + 5)^4 , dx
&= \int \frac{1}{4} u^4 , du \\
&= \frac{1}{20} u^5 \\
&= \frac{1}{20} (2x^2 + 5)^5 + C
\end{align*}
\]
Solution to Example 4:
Let \( u = 2x + 1 \) which gives \( \dfrac{du}{dx} = 2 \) and \( dx = \dfrac{1}{2} du \). Solve \( u = 2x + 1 \) for \( x \) to obtain \( x = \dfrac{1}{2}(u - 1) \). The substitution gives
\[
\begin{align*}
\int x \sqrt{2x + 1} , dx
&= \int \frac{1}{2}(u - 1) \sqrt{u} \cdot \frac{1}{2} , du \\
&= \frac{1}{4} \int (u - 1) u^{1/2} , du \\
&= \frac{1}{4} \left( \frac{2}{5} u^{5/2} - \frac{2}{3} u^{3/2} \right) \\
&= \frac{(2x + 1)^{3/2} (3x - 1)}{15} + C
\end{align*}
\]
Solution to Example 5:
Let \( u = x - 5 \) which gives \( \dfrac{du}{dx} = 1 \). Substituting into the given integral, we obtain
\[
\begin{align*}
\int (x - 5)^{-4} , dx
&= \int u^{-4} , du \\
&= -\frac{1}{3} u^{-3} \\
&= -\frac{1}{3} (x - 5)^{-3} + C
\end{align*}
\]
Solution to Example 6:
Let \( u = x^2 + 2 \) which gives \( \dfrac{du}{dx} = 2x \) and \( \dfrac{1}{2} du = x \, dx \). A substitution into the given the integral gives
\[
\begin{align*}
\int -x e^{x^2 + 2} , dx
&= \int - e^{u} \cdot \frac{1}{2} , du \\
&= -\frac{1}{2} \int e^{u} , du \\
&= -\frac{1}{2} e^{u} \\
&= -\frac{1}{2} e^{x^2 + 2} + C
\end{align*}
\]
Solution to Example 7:
Let \( u = \sin(x) \) which gives \( \dfrac{du}{dx} = \cos(x) \) or \( \cos(x) \, dx = du \). Substitute into the integral to obtain
\[
\begin{align*}
\int \cos(x) \sin^4(x) , dx
&= \int u^4 , du \\
&= \frac{1}{5} u^5 \\
&= \frac{1}{5} \sin^5(x) + C
\end{align*}
\]
Solution to Example 8:
Let \( u = 4x + 1 \) which gives \( \dfrac{du}{dx} = 4 \) or \( dx = \dfrac{1}{4} du \). Solve \( u = 4x + 1 \) for \( x \) to obtain \( x = \dfrac{1}{4}(u - 1) \). Substitute to obtain
\[
\begin{align*}
\int \frac{3x}{4x + 1} , dx
&= \int 3 \cdot \frac{1}{4} \cdot \frac{u - 1}{u} , du \\
&= \frac{3}{16} \int \frac{u - 1}{u} , du \\
&= \frac{3}{16} \int \left( 1 - \frac{1}{u} \right) , du \\
&= \frac{3}{16} (u - \ln|u|) \\
&= \frac{3}{16} \bigl( 4x + 1 - \ln|4x + 1| \bigr) + C
\end{align*}
\]
Solution to Example 9:
Let \( u = x - 2 \) which gives \( \dfrac{du}{dx} = 1 \), \( dx = du \) and \( x = u + 2 \). Substitution
\[
\begin{align*}
\int \frac{x}{\sqrt{x - 2}} , dx
&= \int \frac{u + 2}{\sqrt{u}} , du \\
&= \int \big(u^{1/2} + 2 u^{-1/2}\big) , du \\
&= \frac{2}{3} u^{3/2} + 4 \sqrt{u} \\
&= \frac{2}{3} (x - 2)^{3/2} + 4 \sqrt{x - 2} + C
\end{align*}
\]
Solution to Example 10:
Let \( u = x + 2 \) which gives \( \dfrac{du}{dx} = 1 \), \( dx = du \) and also \( x = u - 2 \). Using the above substitution we obtain
\[
\begin{align*}
\int (x + 2)^3 (x + 4)^2 , dx
&= \int u^3 (u + 4)^2 , du \\
&= \int (u^5 + 4u^4 + 4u^3) , du \\
&= \frac{1}{6} u^6 + \frac{4}{5} u^5 + u^4 \\
&= \frac{1}{6} (x + 2)^6 + \frac{4}{5} (x + 2)^5 + (x + 2)^4 + C
\end{align*}
\]
Solution to Example 11:
Let \( u = x^2 + 3x + 1 \) which gives \( \dfrac{du}{dx} = 2x + 3 \) or \( (2x + 3) \, dx = du \). The substitution helps in computing the integral as follows
\[
\begin{align*}
\int \frac{1}{u} du &= \ln|u| \\
&= \ln|x^2 + 3x + 1| + C
\end{align*}
\]