Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Table of Laplace Transforms

Definition of Laplace Transforms

Let f(t) be a function of the real variable t, such that t0. The Laplace transform F(s) of f is given by the integral F(s)=L(f(t)=0estf(t)dt where s is a complex variable. f(t) is called the original and F(s) is called the image function.

Table of Laplace Transforms

f(t) F(s)
1 1s
t 1s2
tn n!sn+1, (n=1,2,3...)
t1/2 π2s3/2
t1/2 πs
eat 1s+a
teat 1(s+a)2
sin(at) as2+a2
tsin(at) 2as(s2+a2)2
eatsin(bt) b(s+a)2+b2
cos(at) ss2+a2
tcos(at) s2a2(s2+a2)2
eatcos(bt) s+a(s+a)2+b2
sinh(at) as2a2
cosh(at) ss2a2
1cos(at) a2s(s2+a2)
(2t)(tcos(at)) ln(s2+a2s2)
(2t)(tcosh(at)) ln(s2a2s2)
(1t)(sin(at)) arctan(as)

More references on integrals in calculus


Laplace Transform with Examples and Solutions
Find Area Under Curve
table of integrals
properties of integrals