Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Table of Laplace Transforms
Definition of Laplace Transforms
Let f(t) be a function of the real variable t, such that t≥0. The
Laplace transform F(s) of f is given by the integral
F(s)=L(f(t)=∫∞0e−stf(t)dt
where s is a complex variable. f(t) is called the original and F(s) is called the image function.
Table of Laplace Transforms
f(t)
|
F(s)
|
1 |
1s |
t |
1s2 |
tn |
n!sn+1, (n=1,2,3...) |
t1/2 |
√π2s3/2 |
t−1/2 |
√πs |
e−at |
1s+a |
te−at |
1(s+a)2 |
sin(at) |
as2+a2 |
tsin(at) |
2as(s2+a2)2 |
e−atsin(bt) |
b(s+a)2+b2 |
cos(at) |
ss2+a2 |
tcos(at) |
s2−a2(s2+a2)2 |
e−atcos(bt) |
s+a(s+a)2+b2 |
sinh(at) |
as2−a2 |
cosh(at) |
ss2−a2 |
1−cos(at) |
a2s(s2+a2) |
(2t)(t−cos(at)) |
ln(s2+a2s2) |
(2t)(t−cosh(at)) |
ln(s2−a2s2) |
(1t)(sin(at)) |
arctan(as) |
More references on integrals in calculus
Laplace Transform with Examples and Solutions
Find Area Under Curve
table of integrals
properties of integrals