Integrals Involving \( \sin(x) \) with Even Power
Tutorial to find integrals involving even powers of \( \sin(x) \), using reducing power formulas, are presented. Exercises with answers are at the bottom of the page. Integrating odd powers of sine is much simpler.
Review Power Reducing Formulas
For \( n \) a positive integer, we have the following formulas in trigonometry that may be used to reduce the power of \( \sin(x) \).
(a) \( \sin^2(x) = \dfrac{1}{2}(1 - \cos(2x)) \)
(b) \( \sin^3(x) = \dfrac{1}{4}(3\sin(x) - \sin(3x)) \)
(c) \( \sin^4(x) = \dfrac{1}{8}(3 - 4\cos(2x) + \cos(4x)) \)
(d) \( \sin^5(x) = \dfrac{1}{16}(\sin(5x) - 5\sin(3x) + 10\sin(x)) \)
(e) \( \sin^6(x) = \dfrac{1}{32}(10 - 15\cos(2x) + 6\cos(4x) - \cos(6x)) \)
Examples with Detailed Solutions
In what follows, \( C \) is the constant of integration.
Example 1
Evaluate the integral \[ \int \sin^2(x) \, dx \] Solution to Example 1:The main idea is to use the identity \( \sin^2(x) = \dfrac{1}{2}(1 - \cos(2x)) \) to reduce the power and hence make the integral easily evaluated as follows:
\( \displaystyle \int \sin^2(x) \, dx = \int \dfrac{1}{2}(1 - \cos(2x)) \, dx \)
\( = \displaystyle \dfrac{1}{2}\int dx - \dfrac{1}{2}\int \cos(2x) \, dx \)
\( = \dfrac{1}{2}x - \dfrac{1}{4}\sin(2x) + C \)
Example 2
Evaluate the integral \[ \int [\sin^2(x) - 16\sin^6(x)] \, dx \] Solution to Example 2:Use the power reducing formulas to rewrite the integral as follows
\( \displaystyle \int [\sin^2(x) - 16\sin^6(x)] \, dx \)
\(\displaystyle = \int \left[\dfrac{1}{2}(1 - \cos(2x)) - 16\left(\dfrac{1}{32}\right)(10 - 15\cos(2x) + 6\cos(4x) - \cos(6x))\right] \, dx \)
\( \displaystyle = \dfrac{1}{2} \int [1 - \cos(2x) - 10 + 15\cos(2x) - 6\cos(4x) + \cos(6x)] \, dx \)
\( \displaystyle = \dfrac{1}{2} \int [-9 + 14\cos(2x) - 6\cos(4x) + \cos(6x)] \, dx \)
\( \displaystyle = \dfrac{1}{2}[-9x + 7\sin(2x) - \dfrac{3}{2}\sin(4x) + \dfrac{1}{6}\sin(6x)] + C \)
Exercises
Evaluate the following integrals.
(a) \(\displaystyle \int [8\sin^6(x) - 2\sin^2(x)] \, dx \)
(b) \( \displaystyle \int [4\sin^4(x) + \sin^2(x)] \, dx \)
Answers to Above Exercises
(a) \( \dfrac{3}{2}x - \dfrac{11}{8}\sin(2x) + \dfrac{3}{8}\sin(4x) - \dfrac{1}{24}\sin(6x) + C \)
(b) \( 2x - \dfrac{5}{4}\sin(2x) + \dfrac{1}{8}\sin(4x) + C \)