The use the Taylor and Maclaurin series to expand and approximate functions as a power series at given values of x is presented. These series provide useful polynomial approximations of the generating functions which are easier to program on calculators. Examples and questions and their solutions are included.
For a function f with derivatives of all orders defined in an interval containing a, the taylor series of function f at x=a is given by [1]
∞∑k=0fk(a)k!(x−a)k=f(a)+f′(a)(x−a)+f″
where f'(a), f''(a), ... , f^{(n)}(a) ... are the derivatives of f evaluated at x = a
The Maclaurin series of function f is the Taylor series at x = 0 and is given by
\sum_{k=0}^{\infty} \dfrac{f^k(0)}{k!} x^k = f(0) + f'(0) x + \dfrac{f''(0)}{2!} x^2 + ... + \dfrac{f^{(n)}(0)}{n!} x^n + ...
The Taylor and Maclaurin series are infinite but they may be truncated to n terms so that the Taylor series is a Taylor polynomial given by
P_n(x) = f(a) + f'(a) (x-a) + \dfrac{f''(a)}{2!} (x-a)^2 + ... + \dfrac{f^{(n)}(a)}{n!} (x-a)^n
An online Online Taylor Series Calculator is included and may be used to check many of the examples and exercises presented below and may also be used to generate and check many other problems.
Example 1
a) Find the Taylor polynomial P_4(x) (of order 4) generated by f(x) = \sin(x) at x = \pi/2 .
b) Use a grahing calculator to graph \sin(x) and P_4(x) in an interval containing \pi/2 and compare the two graphs.
solution
a)
The Talylor series of order 4 of f is given by
P_4(x) = f(\pi/2) + f'(\pi/2) (x-\pi/2) + \dfrac{f''(\pi/2)}{2!} (x-\pi/2)^2 + \dfrac{f^{(3)}(\pi/2))}{3!} (x- \pi/2)^3 + \dfrac{f^{(4)}(\pi/2))}{4!} (x- \pi/2)^4
Calculate the first 4 derivatives of f
f(x) = \sin(x) , f'(x) = \cos(x) , f''(x) = -\sin(x) ,
f^{(3)}(x) = -\cos(x) f^{(4)}(x) = \sin(x)
Evaluate f and its first 4 derivatives of f at x = \pi/2
f(\pi/2) = \sin(\pi/2) = 1 , f'(\pi/2) = \cos(\pi/2) = 0 ,
f''(\pi/2) = - \sin(\pi/2) = -1 ,
f^{(3)}(\pi/2) = -\cos(\pi/2) = 0 ,
f^{(4)}(\pi/2) = \sin(\pi/2) = 1 ,
Substitute in P_4(x) given above
P_4(x) = f(a) + f'(a) (x-\pi/2) + \dfrac{f''(a)}{2!} (x-\pi/2)^2 + \dfrac{f^{(3)}(\pi/2))}{3!} (x- \pi/2)^3 + \dfrac{f^{(4)}(\pi/2))}{4!} (x- \pi/2)^4 \\
\quad = 1 - \dfrac{1}{2} (x-\pi/2)^2 + \dfrac{1}{24} (x- \pi/2)^4
b)
Comparing the graphs of \sin(x) and its Taylor series of order 4 , the two graphs are very close and therefore P_4(x) may be used to approximate \sin(x) within an interval containing \pi/2 .
Example 2
a) Find the Taylor polynomial P_5(x) (of order 5) generated by f(x) = \ln(x) at x = 1 .
b) Use a grahing calculator to graph \ln(x) and P_5(x) in an interval containing 1 and compare the two graphs.
c) Evaluate P_5(x) and \ln(x) in the table below and compare the corresponding values .
P_5(1.01) | \ln(1.01) |
P_5(0.99) | \ln(0.99) |
P_5(1.1) | \ln(1.1) |
P_5(0.9) | \ln(0.9) |
P_5(1.5) | \ln(1.5) |
P_5(0.5) | \ln(0.5) |
P_5(1.8) | \ln(1.8) |
P_5(0.2) | \ln(0.2) |
P_5(1.01) = 0.00995 | \ln(1.01) = 0.00995 |
P_5(0.99) = -0.01005 | \ln(0.99) = -0.01005 |
P_5(1.1) = 0.09531 | \ln(1.1) = 0.09531 |
P_5(0.9) = -0.10536 | \ln(0.9) = -0.10536 |
P_5(1.5) = 0.40729 | \ln(1.5) = 0.40546 |
P_5(0.5) = -0.68854 | \ln(0.5) = -0.69314 |
P_5(1.8) = 0.61380 | \ln(1.8) = 0.58778 |
P_5(0.2) = -1.45860 | \ln(0.2) = -1.60943 |
Example 3
a) Find the Maclaurin series generated by f(x) = e^x .
b) Use a grahing calculator to graph the Maclaurin series in an interval containing 0 with 2, 3, 4, 5 and 6 terms.
solution
a)
The Maclaurin series of f is given by
\sum_{k=0}^{\infty} \dfrac{f^k(0)}{k!} x^k = f(0) + f'(0) x + \dfrac{f''(0)}{2!} x^2 + ... + \dfrac{f^{(n)}(0)}{n!} x^n + ...
Calculate the derivatives of f(x) = e^x
f(x) = e^x , f'(x) = e^x , f''(x) = e^x ,
f^{(n)}(x) = e^x for all n \ge 3
Evaluate the function and its derivatives at x = 0
f(0) = 1 , f'(0) = 1 , f''(0) = 1 ,
f^{(n)}(0) = 1 for all n \ge 3
Substitute in the series above to obtain the Maclaurin series of f(x) = e^x
1 + x + \dfrac{1}{2!} x^2 + ... + \dfrac{1}{n!} x^n + ...
b)
Maclaurin series with 2, 3, 4, 5 and 6 terms are given by
P_1(x) = 1 + x
P_2(x) = 1 + x + \dfrac{1}{2} x^2
P_3(x) = 1 + x + \dfrac{1}{2} x^2 + \dfrac{1}{6} x^3
P_4(x) = 1 + x + \dfrac{1}{2!} x^2 + \dfrac{1}{6} x^3 + \dfrac{1}{24} x^4
P_5(x) = 1 + x + \dfrac{1}{2!} x^2 + \dfrac{1}{6} x^3 + \dfrac{1}{24} x^4 + \dfrac{1}{120} x^5
The above five polynoials are graphed below along with the given function f(x) = e^x . We note that the approximations around x = 0 get better as the numbers of terms in the series increases.
Part A
Find the Taylor polynomial of order 4 generated by f at the given value of x
a) f(x) = e^{-x} , at x = 2
b) f(x) = \sin(x/2) , at x = \pi
Part B
Find the Maclaurin series for the functions
a) f(x) = \cos(x+\pi/2)
b) f(x) = e^x + e^{-x}
c) f(x) = e^{-x^2}
d) f(x) = \sin(x)
e) f(x) = e^x - e^{-x}
Part C
Find the Taylor polynomial of order 5 generated by f(x) = \sin(x) e^x at x = 0 and graph f and the taylor polynomial in the same system of coordinates.
a)
Part A
a)
P_4(x) = f(2) + f'(2) (x-2) + \dfrac{f''(2)}{2!} (x-2)^2 + \dfrac{f^{(3)}(2))}{3!} (x- 2)^3 + \dfrac{f^{(4)}(2))}{4!} (x- 2)^4
f(x) = e^{-x} , f'(x) = - e^{-x} , f''(x) = e^{-x} , f^{(3)}(x) = - e^{-x} , f^{(4)}(x) = e^{-x}
P_4(x) = \quad \dfrac{1}{e^2}-\dfrac{1}{e^2}\left(x-2\right)+\dfrac{1}{2e^2}\left(x-2\right)^2-\dfrac{1}{6e^2}\left(x-2\right)^3+\dfrac{1}{24e^2}\left(x-2\right)^4 \\
= \dfrac{x^4}{24e^2}-\dfrac{x^3}{2e^2}+\dfrac{5x^2}{2e^2}-\dfrac{19x}{3e^2} + \dfrac{7}{e^2}
b)
P_4(x) = f(\pi ) + f'(\pi ) (x-\pi ) + \dfrac{f''(\pi )}{2!} (x-\pi )^2 + \dfrac{f^{(3)}(\pi ))}{3!} (x- \pi )^3 + \dfrac{f^{(4)}(\pi ))}{4!} (x- \pi )^4
f(x) = \sin(x/2) , f'(x) = \dfrac{1}{2} \cos(x/2) , f''(x) = - \dfrac{1}{4} \sin(x/2) , f^{(3)}(x) = - \dfrac{1}{8} \cos(x/2) , f^{(4)}(x) = \dfrac{1}{16} \cos(x/2)
P_4(x) = 1-\dfrac{1}{8}\left(x-\pi \right)^2+\dfrac{1}{384}\left(x-\pi \right)^4 \\
= \dfrac{x^4}{384}-\dfrac{\pi x^3}{96}-\dfrac{x^2}{8}+\dfrac{\pi ^2x^2}{64}+\dfrac{\pi x}{4}-\dfrac{\pi ^3x}{96}-\dfrac{48 \pi ^2+\pi ^4+384}{384}
Part B
Maclaurin series are given by: \quad f(0) + f'(0) x + \dfrac{f''(0)}{2!} x^2 + ... + \dfrac{f^{(n)}(0)}{n!} x^n + ...
a)
f(x) = \cos(x+\pi/2) , f'(x) = - \sin(x+\pi/2) , f''(x) = - \cos(x+\pi/2) , f^{(3)}(x) = \sin(x+\pi/2) ...
Maclaurin series
-x+\dfrac{1}{6}x^3-\dfrac{1}{120}x^5+\dfrac{1}{5040}x^7-\dfrac{1}{362880}x^9+\ldots \:
b)
f(x) = e^x + e^{-x} , f'(x) = e^x - e^{-x} , f''(x) = e^x + e^{-x} , f^{(3)}(x) = e^x - e^{-x} ...
Maclaurin series
2+x^2+\dfrac{1}{12}x^4+\dfrac{1}{360}x^6+\dfrac{1}{20160}x^8+ \ldots \:
c)
f(x) = e^{-x^2} , f'(x) = -2e^{-x^2}x , f''(x) = -2\left(-2e^{-x^2}x^2+e^{-x^2}\right) , f^{(3)}(x) = -2\left(4e^{-x^2}x^3-6e^{-x^2}x\right)
Maclaurin series
1-x^2+\dfrac{1}{2}x^4-\dfrac{1}{6}x^6+\dfrac{1}{24}x^8+\ldots \:
d)
f(x) = \sin(x) , f'(x) = \cos(x) , f''(x) = -\sin(x) , f^{(3)}(x) = - \cos(x) , ...
Maclaurin series
x-\dfrac{1}{6}x^3+\dfrac{1}{120}x^5-\dfrac{1}{5040}x^7+\dfrac{1}{362880}x^9+\ldots \:
e)
f(x) = e^x - e^{-x} , f'(x) = e^x + e^{-x} , f''(x) = e^x - e^{-x} , f^{(3)}(x) = e^x + e^{-x} ...
Maclaurin series
2x+\dfrac{1}{3}x^3+\dfrac{1}{60}x^5+\dfrac{1}{2520}x^7+\dfrac{1}{181440}x^9+\ldots
Part C
P_5(x) = x+x^2+\frac{1}{3}x^3-\dfrac{1}{30}x^5