Free From www.analyzemath.com

Calculus Worksheet: Differentiation of Inverse Functions (1)

review
If f^{-1} is the inverse of function f then

$$
f\left(f^{-1}(x)\right)=x
$$

If we let $u=f^{-1}(x)$
Then we have $f(u)=x$.
Differentiate both side of $f(u)=x$ to obtain

$$
\frac{d f}{d u} \frac{d u}{d x}=1 \quad(\text { The chain rule has been used for the term } f(u))
$$

The above may be written as

$$
\frac{d u}{d x}=\frac{1}{\frac{d f}{d u}}
$$

Since $u=f^{-1}(x)$, the above may be written as

$$
\frac{d f^{-1}(x)}{d x}=\frac{1}{f^{\prime}(u)}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

And finally

$$
\frac{d f^{-1}(x)}{d x}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Where f^{\prime} is the first derivative of f and $f^{\prime}\left(f^{-1}(x)\right)$ is the first derivative evaluated at $f^{-1}(x)$.
See example on how to use the above formula in next page.

Example 1: Use the above formula to find the first derivative of the inverse of the sine function written as

$$
y=\sin ^{-1}(x),-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}
$$

Let $f(x)=\sin (x)$ and $f^{-1}(x)=\sin ^{-1}(x)$ and use the formula to write

$$
\frac{d y}{d x}=\frac{d \sin ^{-1}(x)}{d x}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

f^{\prime} is the first derivative of f and is given by

$$
f^{\prime}(x)=\cos (x)
$$

Hence

$$
\frac{d \sin ^{-1}(x)}{d x}=\frac{1}{\cos \left(f^{-1}(x)\right)}
$$

Let us now deal with the term $\cos \left(f^{-1}(x)\right)$ which is equal to $\cos \left(\sin ^{-1}(x)\right)$

Let $\alpha=\sin ^{-1}(x)$ and write

$$
\cos \left(\sin ^{-1}(x)\right)=\cos (\alpha)=\sqrt{1-\sin ^{2}(\alpha)}
$$

Use the fact that $\sin \left(\sin ^{-1}(x)\right)=x$ to write that

$$
\sin ^{2}(\alpha)=\left[\sin \left(\sin ^{-1}(x)\right)\right]^{2}=x^{2}
$$

Substitute $\sin ^{2}(\alpha)$ by x^{2} above to obtain

$$
\cos \left(f^{-1}(x)\right)=\cos \left(\sin ^{-1}(x)\right)=\sqrt{1-x^{2}}
$$

Finally

$$
\frac{d \sin ^{-1}(x)}{d x}=\frac{1}{\sqrt{1-x^{2}}}
$$

More examples are in this website.
www.analyzemath.com/calculus/Differentiation/inverse trigonometric.html

