Rationalize Denominators - Questions with Solutions

Grade 10 questions on how to rationalize radical expressions with solutions are presented.

To rationalize radical expressions with denominators is to express the denominator without radicals

Examples with Solutions

The following identities may be used to rationalize denominators of rational expressions.
  1. \(\quad \sqrt{x} \cdot \sqrt{x} = (\sqrt{x})^2 = x\)
  2. \(\quad \sqrt[3]{x} \cdot (\sqrt[3]{x})^2 = (\sqrt[3]{x})^3 = x\)
  3. \(\quad (\sqrt{x} - \sqrt{y}) (\sqrt{x} + \sqrt{y}) = (\sqrt{x})^2 - (\sqrt{y})^2 = x - y\)
  4. \(\quad (x - \sqrt{y}) (x + \sqrt{y}) = x^2 - (\sqrt{y})^2 = x^2 - y\)

Examples

Rationalize the denominators of the following expressions and simplify if possible.

  1. \[ \dfrac{1}{\sqrt{2} } \]

    solution

    Because of \( \sqrt 2 \) in the denominator, multiply numerator and denominator by \( \sqrt 2 \) and simplify \[ \dfrac{1}{\sqrt{2}} = \dfrac{1}{\sqrt{2}} \cdot \dfrac{\sqrt{2}}{\sqrt{2}} = \dfrac{\sqrt{2}}{(\sqrt{2})^2} = \dfrac{\sqrt{2}}{2} \]

  2. \[ \dfrac{1}{\sqrt[3]{x}} \]

    solution

    Because of \( \sqrt[3]{x} \) in the denominator, multiply the numerator and denominator by \( \left( \sqrt[3]{x} \right)^2 \) and simplify. \[ \dfrac{1}{\sqrt[3]{x}} = \dfrac{1}{\sqrt[3]{x}} \cdot \dfrac{\left( \sqrt[3]{x} \right)^2}{\left( \sqrt[3]{x} \right)^2} = \dfrac{\sqrt[3]{x^2}}{x} \]

  3. \[ \dfrac{4}{\sqrt{3} - \sqrt{2}} \]

    solution

    Because of the expression \( \sqrt{3} - \sqrt{2} \) in the denominator, multiply the numerator and denominator by the conjugate of \( \sqrt{3} - \sqrt{2} \) which is \( \sqrt{3} + \sqrt{2} \) to obtain: \[ \dfrac{4}{\sqrt{3} - \sqrt{2}} = \dfrac{4}{\sqrt{3} - \sqrt{2}} \cdot \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}} \] \[ = \dfrac{4(\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})} \] \[ = \dfrac{4(\sqrt{3} + \sqrt{2})}{(\sqrt{3})^{2} - (\sqrt{2})^{2}} \] \[ = \dfrac{4(\sqrt{3} + \sqrt{2})}{3 - 2} = 4(\sqrt{3} + \sqrt{2}) \]

  4. \[ \dfrac{5x^{2}}{\sqrt[3]{x^{2}}} \]

    solution

    Because of the expression \( \sqrt[3]{x^2} \) in the denominator, multiply the numerator and denominator by \( \left( \sqrt[3]{x^2} \right)^2 \) to obtain \[ \dfrac{5x^2}{\sqrt[3]{x^2}} = \dfrac{5x^2}{\sqrt[3]{x^2}} \cdot \dfrac{\left( \sqrt[3]{x^2} \right)^2}{\left( \sqrt[3]{x^2} \right)^2} \] \[ = \dfrac{5x^2 \sqrt[3]{x^4}}{\left( \sqrt[3]{x^2} \right)^3} \] Simplify and cancel terms: \[ = \dfrac{5x^2 \sqrt[3]{x^4}}{x^2} = 5\sqrt[3]{x^4} = 5x\sqrt[3]{x} \]

  5. \[ 5) \quad \dfrac{x^2}{y + \sqrt{x^2 + y^2}} \]

    solution

    Because of the expression \( y + \sqrt{x^2 + y^2} \) in the denominator, multiply numerator and denominator by its conjugate \( y - \sqrt{x^2 + y^2} \) to obtain \[ \dfrac{x^2}{y + \sqrt{x^2 + y^2}} = \dfrac{x^2}{y + \sqrt{x^2 + y^2}} \cdot \dfrac{y - \sqrt{x^2 + y^2}}{y - \sqrt{x^2 + y^2}} \] \[ = \dfrac{x^2(y - \sqrt{x^2 + y^2})}{(y)^2 - (\sqrt{x^2 + y^2})^2} \] \[ = \dfrac{x^2(y - \sqrt{x^2 + y^2})}{y^2 - (x^2 + y^2)} \] \[ = \dfrac{x^2(y - \sqrt{x^2 + y^2})}{-x^2} \] \[ = -y + \sqrt{x^2 + y^2} \]

Questions

Rationalize the denominators of the following expressions and simplify if possible.
  1. \( \quad \dfrac{10}{\sqrt{5}} \)
  2. \( \quad 2\sqrt{2}\sqrt{3} - \dfrac{\sqrt{2} - \sqrt{3}}{\sqrt{2} + \sqrt{3}} \)
  3. \( \quad \dfrac{7x^4}{\sqrt[3]{x^4}} \)
  4. \( \quad \dfrac{-x^2}{y + \sqrt{x^2 + y^2}} \)

Solutions to the Above Problems


  1. Multiply numerator and denominator by \( \sqrt 5 \) \[ \frac{10}{\sqrt{5}} = \frac{10}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{10\sqrt{5}}{(\sqrt{5})^2} = \frac{10\sqrt{5}}{5} = 2\sqrt{5} \]

  2. Multiply numerator and denominator by \( \sqrt{2} - \sqrt{3} \) \[ 2\sqrt{2}\sqrt{3} - \frac{\sqrt{2} - \sqrt{3}}{\sqrt{2} + \sqrt{3}} = 2\sqrt{2}\sqrt{3} - \frac{\sqrt{2} - \sqrt{3}}{\sqrt{2} + \sqrt{3}} \cdot \frac{\sqrt{2} - \sqrt{3}}{\sqrt{2} - \sqrt{3}} \] and simplify \[ = 2\sqrt{2}\sqrt{3} - \frac{(\sqrt{2}-\sqrt{3})^2}{(\sqrt{2})^2-(\sqrt{3})^2} \] \[ = 2\sqrt{2}\sqrt{3} - \frac{(\sqrt{2})^2 + (\sqrt{3})^2 - 2\sqrt{2}\sqrt{3}}{2-3} \] \[ = 2\sqrt{2}\sqrt{3} - \frac{2+3-2\sqrt{2}\sqrt{3}}{-1} \] \[ = 2\sqrt{2}\sqrt{3} + 5 - 2\sqrt{2}\sqrt{3} \] \[ = 5 \]

  3. Multiply numerator and denominator by \( \left( \sqrt[3]{x^4} \right)^2 \) \[ \frac{7x^4}{\sqrt[3]{x^4}} = \frac{7x^4}{\sqrt[3]{x^4}} \cdot \frac{\left( \sqrt[3]{x^4} \right)^2}{\left( \sqrt[3]{x^4} \right)^2} \] and simplify \[ = \frac{7x^4 \sqrt[3]{x^8}}{\left( \sqrt[3]{x^4} \right)^3} = \frac{7x^4 \sqrt[3]{x^8}}{x^4} = 7 \sqrt[3]{x^8} = 7x^2 \sqrt[3]{x^2} \]

  4. Multiply numerator and denominator by \( y - \sqrt{x^2 + y^2} \) \[ \frac{-x^2}{y + \sqrt{x^2 + y^2}} = \frac{-x^2}{y + \sqrt{x^2 + y^2}} \cdot \frac{y - \sqrt{x^2 + y^2}}{y - \sqrt{x^2 + y^2}} \] and simplify \[ = \frac{-x^2(y - \sqrt{x^2 + y^2})}{y^2 - (x^2 + y^2)} \] \[ = \frac{-x^2(y - \sqrt{x^2 + y^2})}{-x^2} = y - \sqrt{x^2 + y^2} \]

More References and links