Solutions to Factoring Polynomials by Common Factor
Questions With Detailed Solutions

Solutions on how factor polynomials by common factor are presented.

Use common factors to factor completely the following polynomials.

a) \[-3x + 9\] b) \[28x + 2x^2\] c) \[11xy + 55x^2y\] d) \[20xy + 35x^2y - 15xy^2\] e) \[5y(x + 1) + 10y^2(x + 1) - 15xy(x + 1)\]

Solution

a)

Find any common factors in the two terms of \( -3x + 9 \) by expressing both terms, \( -3x \) and \( 9 \), using prime factorization.

\[ -3x + 9 = -\color{red}{3} \cdot x + \color{red}{3} \cdot 3 \] The greatest common factor is \( \color{red}{3} \), which is factored out. Hence, \[ -3x + 9 = \color{red}{3}(-x + 3) = -3(x - 3) \] b)

Write the prime factorization of each of the terms in the given polynomial \( 28x + 2x^2 \).

\[ 28x + 2x^2 = \color{red}{2} \cdot 2 \cdot 7 \cdot \color{red}{x} + \color{red}{2} \cdot \color{red}{x} \cdot x \] The greatest common factor is \( \color{red}{2x} \), and it is factored out. Hence, \[ 28x + 2x^2 = \color{red}{2x}(14 + x) \] c)

Write the prime factorization of each of the terms in the given polynomial \( 11xy + 55x^2y \). \[ 11xy + 55x^2y = \color{red}{11} \cdot \color{red}{x} \cdot \color{red}{y} + 5 \cdot \color{red}{11} \cdot \color{red}{x} \cdot x \cdot \color{red}{y} \] The greatest common factor is \( \color{red}{11xy} \), which is factored out. Hence, \[ 11xy + 55x^2y = \color{red}{11xy}(1 + 5x) \] d)

Write the prime factorization of each of the terms in the given polynomial \( 20xy + 35x^2y - 15xy^2 \). \[ 20xy + 35x^2y - 15xy^2 = 2 \cdot 2 \cdot \color{red}{5} \cdot \color{red}{x} \cdot \color{red}{y} + \color{red}{5} \cdot 7 \cdot \color{red}{x} \cdot x \cdot \color{red}{y} - 3 \cdot \color{red}{5} \cdot \color{red}{x} \cdot \color{red}{y} \cdot y \] The greatest common factor is \( \color{red}{5xy} \), and it is factored out. Hence, \[ 20xy + 35x^2y - 15xy^2 = \color{red}{5xy}(4 + 7x - 3y) \] e)

We start by factoring out the common factor \( (x + 1) \) in the given polynomial.

\[ 5y(x + 1) + 10y^2(x + 1) - 15xy(x + 1) = (x + 1)(5y + 10y^2 - 15xy) \]

We now factor the polynomial \( 5y + 10y^2 - 15xy \) using the greatest common factor (GCF) of all three terms.

\[ 5y + 10y^2 - 15xy = \color{red}{5 \cdot y} + 2 \cdot \color{red}{5 \cdot y} \cdot y - 3 \cdot \color{red}{5 \cdot y} \cdot x = \color{red}{5 \cdot y}(1 + 2y - 3x) \]

The given polynomial may be factored as follows:

\[ 5y(x + 1) + 10y^2(x + 1) - 15xy(x + 1) = 5y(x + 1)(1 + 2y - 3x) \]

More References and Links Factoring