The detailed solutions and full explanations to the questions on Greatest Common Factor of Monomials are presented.
Find the greatest common factor of \( 45x^3 \), \( 60x^2 \), and \( 75x^4 \).
Solution
Write the prime factorization of the monomial \( 45x^3 \):
\[ 45x^3 = \times 3 \times {5} \times {x \times x} \times x \]Write the prime factorization of the monomial \( 60x^2 \):
\[ 60x^2 = 2 \times 2 \times \times {5} \times {x \times x} \]Write the prime factorization of the monomial \( 75x^4 \):
\[ 75x^4 = {3} \times {5} \times 5 \times {x \times x} \times x \times x \]The greatest common factor of \( 45x^3 \), \( 60x^2 \), and \( 75x^4 \) is:
\[ {3 \times 5 \times x \times x = 15x^2} \]What is the greatest common factor of \(50x^2y^3\), \(75x^2y^2\), and \(125x^4y^3\)?
Solution
Write the prime factorization of the monomial \(50x^2y^3\):
\[ 50x^2y^3 = 2 \times 5 \times 5 \times x \times x \times y \times y \times y \]Write the prime factorization of the monomial \(75x^2y^2\):
\[ 75x^2y^2 = 3 \times 5 \times 5 \times x \times x \times y \times y \]Write the prime factorization of the monomial \(125x^4y^3\):
\[ 125x^4y^3 = 5 \times 5 \times 5 \times x \times x \times x \times x \times y \times y \times y \]The greatest common factor of \(50x^2y^3\), \(75x^2y^2\), and \(125x^4y^3\) is:
\[ 5 \times 5 \times x \times x \times y \times y = 25x^2y^2 \]a) Write the prime factorization of the monomial \( 35x^3y^2 \):
\[ 35x^3y^2 = 5 \times 7 \times x \times x \times x \times y \times y \]Now write the prime factorization of the monomial \( 42x^2y^3 \):
\[ 42x^2y^3 = 2 \times 3 \times 7 \times x \times x \times y \times y \times y \]b) Use the prime factorizations to simplify the rational expression:
\[ \dfrac{35x^3y^2}{42x^2y^3} = \dfrac{5 {7} \times {x \times x} \times x \times {y \times y}}{2 \times 3 \times {7} \times {x \times x} \times{y \times y} \times y} \]Cancel the common factors:
\[ = \dfrac{5x}{6y} \]