Simplify Exponents and Radicals Questions
Review and use the the rules for radicals and exponents to simplify exponents and radical expressions; questions with detailed solutions (lower part of page) and explanations are presented. Try not to use the calculator to simplify numerical expressions except to check your answers. More questions on how to simplify radical expressions are included n this website.
Simplify Numerical Expressions with Exponents
Question 1
Evaluate the following expressions:
- \( 3^2 \)
- - 3 4
- (- 3) 4
- 12 0
- 0 20
- 0 - 4
- (-1) 7
- (-1) 4
- (-1) - 3
- (- 2 / 3) -2
- (- 2) -2 / 4 -2
- - 3 -3 + (- 2) -2
- x 4 for x = - 2
- - x 2 for x = - 3
- - x 5 for x = - 2
- x 4 for x = - 2 / 3
- - x -2 for x = - 1 / 2
- - x 5 for x = - 1 / 3
Simplify Numerical Expressions with Radicals and rational exponents
Question 2
Evaluate the following expressions:
- √(64)
- ∛(-8)
- 4 3/2
- 8 2/3
- 0.0001 3/4
- 16 - 3/4
- √2 √8
- ∛2 ∛(32)
- √2 / √8
- ∛(-16) / ∛2
- - 2 (6√8) (56√8)
- - 4 ∛(375) / (2∛3)
Simplify Algebraic Expressions with Exponents
Question 3
Simplify the following expressions:
- x 2 x 5
- y 4 / y 2
- (x 2) -2
\(
\large {3(\dfrac{1}{2} x^4)(\dfrac{1}{3} x^3) }
\)
\(
\large {(2 x)^4(\dfrac{1}{4} x^{-3}) }
\)
\(
\large { \dfrac{(3x)^2(-2x)^3}{(2x)^2} }
\)
\(
\large { \dfrac{(4x)^2(100 x)^0}{(3x)^2} }
\)
- (- 2 x2 y -3)3
- (3 x2 y3) (2 x5 y - 2)
- (- 2 x2 y3 z4) ( - 4 x3 y z - 8) ( 5 x y2 z2)
\(
\large { (-2xy^2)^2 \left (\dfrac{x^6}{(2x)^2} \right)^3 }
\)
\(
\large { \left (\dfrac{4 x^6 y^3}{-8x^3y^{-2}} \right) }
\)
\(
\large { \left (\dfrac{- 4 x^3 y^2}{3 x^3 y^3} \right) \left (\dfrac{3 x^2 y^5}{-6x^3y^2} \right) }
\)
\(
\large { \dfrac{1}{6}(x^2 y z^3)\left (\dfrac{4 x^2 y^3}{3 x^2 y^{-3}z^2} \right) \left (\dfrac{3 x^2 y^5 z}{-x^3 y^2 z^3} \right) }
\)
\(
\large { (4 x^{2/3})(-8x^{1/2}) }
\)
\(
\large { (4 x)^{3/2}(9x)^{1/2} }
\)
\(
\large { (- 27 x^{3/2})^{1/3} }
\)
\(
\large {\left (\dfrac{-8x^3}{y^{-6}} \right)^{2/3} }
\)
\(
\large { x^{5/3} x^{1/6} x ^{-11/6} }
\)
Simplify Algebraic Expressions with Radicals
Question 4
\(
\large { \sqrt{x^2} }
\)
\(
\large { \sqrt[4]{16x^4} }
\)
\(
\large { \sqrt{(2x - 1)^2} }
\)
\(
\large { \sqrt[3]{-27x^3} }
\)
\(
\large { \sqrt[3]{8 x^6 y^3} }
\)
\(
\large { \sqrt{x^3} \sqrt{x^2} }
\)
\(
\large { \sqrt[3]{\left (\dfrac{-8x^6}{y^{-3}} \right)} y}
\)
\(
\large { \dfrac{ \sqrt[5]{64x^9 y^7}}{ \sqrt[5]{2 x^4 y^2}} }
\)
\(
\large { (4\sqrt[8]{b^2})( 5\sqrt[8]{b^3})( \sqrt[8]{b^3}) }
\)
Solutions to the Above Questions
Question 1
Evaluate the following expressions:
- 3 2 = 3 × 3 = 9
- - 3 4 = - (3 × 3 × 3 × 3 ) = - 81
- (- 3) 4 = - 3 × - 3 × - 3 × - 3 = 81
- 12 0 = 1
- 0 20 = 0
- 0 - 4 = 1 / 0 4 = 1 / 0 : undefined because division by zero is not allowed in maths.
- (-1) 7 = - 1
- (-1) 4 = 1
- (-1) - 3 = 1 / (-1) 3 = 1 / (- 1) = - 1
- (- 2 / 3) -2 = (- 3 / 2) 2 = (-1) 2 ( 3 / 2) 2 = 9 / 4
- (- 2) -2 / 4 -2 = 4 2 / (- 2) 2 = 16 / 4 = 4
- - 3 -3 + (- 2) -2 = - 1 / 3 3 + 1 / (- 2) 2 = - 1 / 27 + 1 / 4 = 23 / 108
- x 4 for x = - 2
x 4 = (-2) 4 = 16
- - x 2 for x = - 3
- x 2 = - (-3) 2 = - 9
- - x 5 for x = - 2
- x 5 = -( - 2) 5 = 32
- x4 for x = - 2 / 3
(- 2 / 3) 4 = (-2) 4 / (3) 4 = 16 / 81
- - x -2 for x = - 1 / 2
- x -2 = - (- 1 / 2) -2 = - ( - 1) -2 ( 1 / 2) -2
= - (1) (2 / 1) 2 = - 4 / 1 = - 4
- - x 5 for x = - 1 / 3
- x 5 = - ( - 1 / 3) 5 - ( - 1) 5( 1 / 3)5
= - (-1) (1 / 243) = 1 / 243
Question 2
Evaluate the following expressions:
- √(64) = √(8 2) = 8
- ∛(-8) = ∛((-2)3) = - 2
- 4 3/2 = (√4) 3 = 2 3 = 8
- 8 2/3 = (∛(8)) 2 = 2 2 = 4
- 0.0001 3/4 = ( 4√(0.0001) ) 3
= ( 4√(1/10000) ) 3 = ( 4√(1/104) )3
= ( 1 / 10 ) 3 = 1 / 10 3 = 0.001
- 16 - 3/4 = 1 / 16 3/4 = 1 / ( 4√(16)) 3
= 1 / 2 3 = 1 / 8
- √2 √8 = √(2 × 8) = √(16) = 4
- ∛2 ∛(32) = ∛(2 × 32) = ∛(64) = 4
- √2 / √8 = √(2 / 8) = √(1 / 4) = 1 / 2
- ∛(-16) / ∛2 = ∛(-16/2) = ∛(- 8) = - 2
- - 2 ( 6√8) (5 6√8) = (- 2 × 5) 6√(8 × 8)
= - 10 6√(64) = - 10 6√(26) = -10(2) = - 20
- - 4 ∛(375) / (2∛3) = (- 4 / 2) ∛ (375 / 3) = - 2 ∛ (375 / 3)
= - 2 ∛ (125) = - 2 × 5 = - 10
Question 3
Simplify the following expressions:
- x 2 x 5 = x 2 + 5 = x7
- y 4 / y 2 = y 4 - 2 = y 2
- (x 2) -2 = (x 2 × (-2)) = x - 4 = 1 / x 4
\(
\large {3(\dfrac{1}{2} x^4)(\dfrac{1}{3} x^3) = (3 \times \dfrac{1}{2} \times \dfrac{1}{3} ) x^{4 + 3} = \dfrac{1}{2} x^7}
\)
\(
\large {(2 x)^4(\dfrac{1}{4} x^{-3}) = 2^4 x^4 (\dfrac{1}{4} x^{-3}) \\\\
= (2^4 \times \dfrac{1}{4}) x^{4-3} = 4 x}
\)
\(
\large { \dfrac{(3x)^2(-2x)^3}{(2x)^2} = \dfrac{3^2 x^2 (-2)^3 x^3}{2^2 x^2} \\\\
= \dfrac{3^2 (-2)^3}{2^2} \dfrac{x^3}{x^2} = - 18 x }
\)
\(
\large { \dfrac{(4x)^2(100 x)^0}{(3x)^2} = \dfrac{4^2 x^2 \times 1}{3^2 x^2} = 16/9 }
\)
- (- 2 x 2 y -3) 3 = (- 2) 3 (x 2) 3 (y -3) 3 = - 8 x 6 y -9 = - 8 x 6 / y 9
- (3 x2 y 3) (2 x 5 y - 2) = (3 × 2)(x 2 x 5)(y 3 y - 2) = 6 x 2 + 5 y 3 - 2 = 6 x 7 y
- (- 2 x 2 y 3 z 4) ( - 4 x 3 y z - 8) ( 5 x y 2 z 2) = (-2 × (-4) × 5)(x 2 x 3 x)(y 3 y y 2)(z 4 z -8 z 2)
= 40 x 2 + 3 + 1 y 3 + 1 + 2 z 4 - 8 + 2 = 40 x 6 y 6 z - 2 = 40 x 6 y 6 / z 2
\(
\large { (-2xy^2)^2 \left (\dfrac{x^6}{(2x)^2} \right)^3 = (-2)^2 x^2 y^4 \left (\dfrac{x^{18}}{(2x)^6} \right) = \dfrac{4x^2 y^4x^{18}}{2^6 x^6}} \\\\
\large { = \dfrac{4}{2^6} \dfrac{x^{2+18}y^4}{x^6} = \dfrac{1}{16} {x^{14} y^4} }
\)
\(
\large { \left (\dfrac{4 x^6 y^3}{-8x^3y^{-2}} \right) = \dfrac{4}{-8} \; \dfrac{x^6 y^3}{x^3y^{-2}} = -\dfrac{1}{2} x^{6-3} y^{3-(-2)} = -\dfrac{1}{2} x^3 y^5 }
\)
\(
\large { \left (\dfrac{- 4 x^3 y^2}{3 x^3 y^3} \right) \left (\dfrac{3 x^2 y^5}{-6x^3y^2} \right) = \dfrac{(- 4 \times 3)}{(3 \times (-6))} \dfrac{(x^3 y^2)(x^2 y^5)}{(x^3 y^3)(x^3y^2)} }\\\\\\
\large { = \dfrac{2}{3} \dfrac{x^5 y^7}{x^6 y^5} = \dfrac{2}{3} x^{5-6} y^{7-5}= \dfrac{2}{3} \dfrac{y^2}{x} }
\)
\(
\large { \dfrac{1}{6}(x^2 y z^3)\left (\dfrac{4 x^2 y^3}{3 x^2 y^{-3}z^2} \right) \left (\dfrac{3 x^2 y^5 z}{-x^3 y^2 z^3} \right) = \dfrac{1 \times 4 \times 3}{6 \times 3 \times (-1)} \dfrac{(x^2 y z^3)(x^2 y^3)(x^2 y^5 z)}{(x^2 y^{-3}z^2)(-x^3 y^2 z^3)} } \\\\\\
\large { = (-\dfrac{2}{3}) \dfrac{x^{2+2+2}y^{1+3+5}z^{3+1}}{x^{2+3} y^{-3+2} z^{2+3} } = - \dfrac{2}{3} \dfrac{x^6 y^9 z^4}{x^5 y z^5} = - \dfrac{2}{3} \; \dfrac{x y^{10} }{z} }
\)
\(
\large { (4 x^{2/3})(-8x^{1/2}) = (4 \times; (-8))(x^{2/3+1/2}) = - 32 x^{7/6} }
\)
\(
\large { (4 x)^{3/2}(9x)^{1/2} = 4^{3/2} x^{3/2} 9^{1/2} x^{1/2} = (\sqrt 4)^3 (\sqrt 9) x^{3/2+1/2} = 8 \times 3 x^2 = 24 x^2}
\)
\(
\large { (- 27 x^{3/2})^{1/3} = (- 27)^{1/3} (x^{3/2})^{1/3} = \sqrt[3]{-27} x^{3/2 \times 1/3} = - 3 x^{1/2} = - 3 \sqrt x }
\)
\(
\large {\left (\dfrac{-8x^3}{y^{-6}} \right)^{2/3} = \dfrac{(-8x^3)^{2/3}} {(y^{-6})^{2/3}} = \dfrac{(-8)^{2/3} (x^3)^{2/3}} {(y^{-6 \times (2/3)}}} \\\\\\
\large { = \dfrac{(\sqrt[3]{-8})^2 (x^{3 \times (2/3)})} {(y^{-4})} = 4 x^2 y^4 }
\)
\(
\large { x^{5/3} x^{1/6} x ^{-11/6} = x^{5/3+1/6 -11/6} = x^0 = 1 , x \ne 0 }
\)
Question 4
\(
\large { \sqrt{x^2} = | x |}
\)
\(
\large { \sqrt[4]{16x^4} = \sqrt[4]{16} \sqrt[4]{x^4} = 4 | x | }
\)
\(
\large { \sqrt{(2x - 1)^2} = |2x - 1| }
\)
\(
\large { \sqrt[3]{-27x^3} = \sqrt[3]{-27} \sqrt[3]{x^3} = \sqrt[3]{(-3)^3} \sqrt[3]{x^3} = - 3 x }
\)
\(
\large { \sqrt[3]{8 x^6 y^3} = \sqrt[3]{8} \sqrt[3]{ x^6} \sqrt[3]{y^3} = 2 x^{6/3} y = 2 x^2 y}
\)
\(
\large { \sqrt{x^3} \sqrt{x^2} = \sqrt{x^3 x^2} = \sqrt{x^{3+2}} = \sqrt{x^5} = \sqrt{x^4 \times x} = x^2 \sqrt x }
\)
\(
\large { \sqrt[3]{\left (\dfrac{-8x^6}{y^{-3}} \right)} = \dfrac{\sqrt[3]{-8x^6}}{\sqrt[3]{y^{-3}}} = \dfrac{\sqrt[3]{-8} \sqrt[3]{x^6}} {\sqrt[3]{y^{-3} }} }\\\\\\
\large { = \dfrac{\sqrt[3]{(-2)^3} \sqrt[3]{(x^2)^3}} {\sqrt[3]{(y^{-1})^3 }} = \dfrac{-2 x^2}{y^{-1}} = -2 x^2 y}
\)
\(
\large { \dfrac{ \sqrt[5]{64x^9 y^7}}{ \sqrt[5]{2 x^4 y^2}} = \sqrt[5] {\dfrac{64x^9 y^7}{2 x^4 y^2}}} \\\\\\
\large { = \sqrt[5] {32 x^{9-4} y^{7-2}} = \sqrt[5] {2^5} \sqrt[5] x^{5} \sqrt[5] y^{5} = 2 x y }
\)
\(
\large { (4\sqrt[8]{b^2})( 5\sqrt[8]{b^3})( \sqrt[8]{b^3}) = (4 \times 5) \sqrt[8]{b^2 b^3 b^3 } = 20 \sqrt[8]{b^8 } = 20 |b| = 20 b }
\)
Note: In the last question; since 8√(b3) is real then b is greater than or equal to zero. Hence |b| = b.
More References and links
the rules for radicals and exponents
simplify radical expressions
Divide Radical Expressions
Radical Expressions
Home Page