The solutions to the questions on factoring of special polynomials in factoring of special polynomials are presented.
The difference of squares formula is given by: \[ a^2 - b^2 = (a - b)(a + b) \]
This identity comes in two forms:
The formula for the difference of cubes is: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \]
The formula for the sum of cubes is: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \]
a) \( -25x^2 + 9 \)
b) \( 16y^4 - x^4 \)
c) \( 36y^2 - 60xy + 25x^2 \)
d) \( \dfrac{1}{2}x^2 + x + \dfrac{1}{2} \)
e) \( -y^3 - 64 \)
f) \( x^6 - 1 \)
Let \(a = 5x\) and \(b = 3\). Then
\[ -25x^2 + 9 = -a^2 + b^2. \]Using the difference of squares formula \(a^2 - b^2 = (a - b)(a + b)\), we get
\[ -25x^2 + 9 = -a^2 + b^2 = (-a + b)(a + b) = (-5x + 3)(5x + 3). \]Write each term as a square:
\[ 16y^4 - x^4 = (4y^2)^2 - (x^2)^2. \]Apply the difference of squares:
\[ (4y^2)^2 - (x^2)^2 = (4y^2 - x^2)(4y^2 + x^2). \]The factor \(4y^2 + x^2\) cannot be factored over the reals, but \(4y^2 - x^2\) is again a difference of squares:
\[ 4y^2 - x^2 = (2y - x)(2y + x). \]Hence
\[ 16y^4 - x^4 = (2y - x)(2y + x)(4y^2 + x^2). \]Recognize a perfect square trinomial:
\[ 36y^2 - 60xy + 25x^2 = (6y)^2 - 2\cdot(6y)\cdot(5x) + (5x)^2. \]Using the square of a binomial formula \(a^2 - 2ab + b^2 = (a - b)^2\), we get
\[ 36y^2 - 60xy + 25x^2 = (6y - 5x)^2. \]Factor out \(\tfrac12\):
\[ \tfrac12 x^2 + x + \tfrac12 = \tfrac12\bigl(x^2 + 2x + 1\bigr). \]Notice \(x^2 + 2x + 1 = (x + 1)^2\). Therefore,
\[ \tfrac12 x^2 + x + \tfrac12 = \tfrac12\,(x + 1)^2. \]Factor out \(-1\) and recognize a sum of cubes:
\[ -y^3 - 64 = -\bigl(y^3 + 4^3\bigr). \]Apply the sum of cubes formula \(a^3 + b^3 = (a + b)(a^2 - ab + b^2)\):
\[ -y^3 - 64 = -\bigl(y + 4\bigr)\bigl(y^2 - 4y + 16\bigr). \]First write as a difference of squares:
\[ x^6 - 1 = (x^3)^2 - 1^2 = (x^3 - 1)(x^3 + 1). \]Then factor each as a difference or sum of cubes:
\[ x^3 - 1 = (x - 1)\bigl(x^2 + x + 1\bigr), \quad x^3 + 1 = (x + 1)\bigl(x^2 - x + 1\bigr). \]Thus
\[ x^6 - 1 = (x - 1)(x^2 + x + 1)(x + 1)(x^2 - x + 1). \]