Solutions to Questions on 3D Vectors (R3)

Detailed solutions to questions on 3D vectors are presented.

Detailed Solutions Questions on 3D Vectors

Solution to Question 1

Given points A and B are defined by their coordinates: \( A (x_1 , y_1 ,z_1) = A(2,6,7) \) and B \( (x_2 , y_2 ,z_2) = B(0,-3,1) \) , we use the formula

\( \vec{AB} = \lt x_2-x_1,y_2-y_1,z_2-z_1 > = \lt 0-2,-3-6,1-7 > = \lt -2,-9,-6> \)

\( \vec{BA} = \lt x_1-x_2,y_1-y_2,z_1-z_2 > = \lt 2-0,6-(-3),7-1 > = \lt 2,9,6>\)

\( \vec{AB} = \lt -2,-9,-6> = -1 \lt 2,9,6> = -1\vec{BA} \)

Solution to Question 2

Given vectors \( \vec{v_1} = \lt a_1,b_1,c_1> = \lt 0,-3,2>\) and \( \vec{v_2} = \lt a_2,b_2,c_2> = \lt -3,4,5>\), the sum \( \vec{v_1} + \vec{v_2}\) , the difference \( \vec{v_1} - \vec{v_2}\) and scalar multiplication \( k \vec{v_1} \), k a real number, are given by

sum: \( \vec{v_1} + \vec{v_2} = \lt a_1+a_2,b_1+b_2,c_1+c_2> \)

difference: \( \vec{v_1} - \vec{v_2} = \lt a_1 - a_2,b_1 - b_2,c_1 - c_2> \)

multiply by a scalar: \( k \vec{v_1} = \lt k a_1,k b_1,k c_1> \).

a) Use the sum formula

\( \vec{v_1} + \vec{v_2} = \lt 0,-3,2> + \lt -3,4,5> = \lt 0+(-3) , -3+4 , 2 + 5 > = \lt -3 , 1 , 7>\)

b) Use the difference formula

\( \vec{v_1} - \vec{v_2} = \lt 0,-3,2> - \lt -3,4,5> = \lt 0 -(-3) , -3 - 4 , 2 - 5 > = \lt 3 , -7 , -3> \)

c) Use the scalar multiplication formula

\( -3\vec{v_1} = -3 \lt 0,-3,2> = \lt -3\cdot0 , -3\cdot(-3) , -3\cdot2> = \lt 0,9,-6> \)

d) Use a combination of scalar and sum formula

\( -2\vec{v_1} + 3\vec{v_2} = -2\lt 0,-3,2> + 3\lt-3,4,5> = \lt 0,6,-4> + \lt-9,12,15> = \lt -9,18,11> \)

e) Find the vector \( \vec{v_1} + k\vec{v_2} \).

\( \vec{v_1} + k\vec{v_2} = \lt 0,-3,2> + k \lt -3,4,5> = \lt -3k ,-3+4k ,2+5k>\)

Find the magnitude of \( \vec{v_1} + k\vec{v_2} \) and make it equal to \( \sqrt{67} \).

\( \sqrt{(-3k)^2 + (-3+4k)^2 + (2+5k)^2} = \sqrt{67}\)

Square both sides of the above equation.

\( (-3k)^2 + (-3+4k)^2 + (2+5k)^2 = 67\)

Expand and group.

\( 50k^2-4k+13 = 67 \)

Solve the above quadratic equation for k to obtain.

\( k = -1 \) and \( k = 27/25\).

Solution to Question 3

The unit vector \( \vec{u} \) in the same direction as vector \(\vec{v} \) is given by.

\( \vec{u} = \dfrac{1}{|| \vec{v} ||} \vec{v} = \dfrac{1}{\sqrt{0^2+(-3)^2+2^2}} \lt 0,-3,2> = \lt 0,-3/\sqrt{13} , 2/\sqrt{13}> \)

Calculate magnitude of \( \vec{u} \) and check that it is equal to 1.

\( || \vec{u} || = \sqrt{ 0^2 + (-3/\sqrt{13})^2 + (2/\sqrt{13})^2 } = \sqrt{ 9/13 + 4/13} = 1\)

Solution to Question 4

The components of a vector defined by two points are given by the difference between the coordinates of the terminal and the initial points.

\( \vec{AB} = \lt x_2-x_1,y_2-y_1,z_2-z_1> = \lt 0-2,-3-6,1-7> = \lt -2,-9,-6>\)

\( \vec{BC} = \lt 0-0,3-(-3),4-1> = \lt 0,6,3>\)

\( \vec{AC} = \lt 0-2,3-6,4-7> = \lt -2,-3,-3>\)

\( \vec{AB} + \vec{BC} = \lt -2,-9,-6> + \lt 0,6,3> = \lt -2+0,-9+6,-6+3> = \lt -2,-3,-3> = \vec{AC} \)

Solution to Question 5

The components of a vector defined by two points are given by the difference between the coordinates of the terminal and the initial points.

\( \vec{AB} = \lt 2-(-1),4-2,2-1> = \lt 3,2,1>\)

\( \vec{BC} = \lt 5-2,6-4,3-2> = \lt 3,2,1>\)

\( \vec{AC} = \lt 5-(-1),6-2,3-1> = \lt 6,4,2>\)

\( \vec{AB} \) and \( \vec{BC} \) has equal components and are therefore equivalent.

Note that

\( \vec{AC} = \lt 6,4,2> = 2 \lt 3,2,1> = 2\vec{BC}\)

Hence, \( \vec{AC} \) is parallel to \( \vec{BC}\) and \( \vec{AB} \).

Solution to Question 6

Let \( \vec{v} = \lt x,y,z \gt \) and rewrite the vector equation \(\vec{v_1} - 2 \vec{v} = 3 \vec{v} - 3 \vec{v_2} \) using the components.

\(\lt -4,0,2> - 2 \lt x,y,z \gt = 3 \lt x,y,z \gt - 3 \lt -1,-4,2> \)

Multiply and subtract and group each side of the vector equation.

\( \lt -4-2x,0-2y,2-2z> = \lt 3x -3(-1) , 3y - 3(-4) , 3z - 3(2)> \)

\( \lt -4-2x,-2y,2-2z> = \lt 3x + 3 , 3y + 12 , 3z - 6> \)

Two vectors are equal ( or equivalent) if their components are equal. Hence the equations:

\( -4-2x = 3x + 3 \;\; , \;\; solution: x = -7/5 \)

\( -2y = 3y + 12 \;\; , \;\; solution: y = -12/5 \)

\( 2-2z = 3z - 6 \;\; , \;\; solution: z = 8/5 \)

\( \vec{v} = \lt -7/5,-12/5,8/5 \gt \)

Solution to Question 7

\( \vec{u} \) is twice vector \( \vec{v} \). Hence

\( \vec{u} = 2 \vec{v} = 2 \lt -4,2,2> = \lt -8 , 4 , 4> \)

Solution to Question 8

The unit vector in the opposite direction of \( \vec{v} \) is given by

\(-\dfrac{1}{||\vec{v}||} \vec{v} \)

where \( ||\vec{v} || \) is the magnitude of \( \vec{v} \) and is given by

\( ||\vec{u} || =\sqrt{(-1)^2+2^2+2^2} = 3\)

\( \vec{u} \) is given by

\(5(-\dfrac{1}{3} \vec{v}) = (-5/3) \lt -1 , 2 , 2> = \lt 5/3 , -10/3 , -10/3>\)

Solution to Question 9

We first note that

\( ||k \vec{v} || = |k| || \vec{v} || \)

\( || \vec{v} || \) is given by

\( || \vec{v} ||= \sqrt{(-1)^2+2^2+2^2} = 3\)

Substituting in the equation \( ||k \vec{v} || = 1/5 \), we obtain

\( 3 |k| = 1/5 \)

which gives

|k| = 1/15

Two solutions.

k = 1/15 and k = - 1/15

Solution to Question 10

Vectors \(\vec{v_1} \) and \(\vec{v_2} \) are parallel if there exists k such that

\(\vec{v_1} = k \vec{v_2} \)

Hence the vector equation

\( \lt -4,6,2> = k \lt 2,b,c> = \lt 2k , k b , k c > \)

The above vector equation gives 3 components equations:

\( -4 = 2 k \) , hence \( k = -2 \)

\( 6 = k b = - 2 b\) , hence \( b = -3 \)

\( 2 = k c = -2 c \) , hence \( c = 1 \)

Solution to Question 11

For the points A, B and C to be collinear, we need to find k such that

\( \vec{AC} = k \vec{AB} \) , vector AC and AB are collinear.

Find the components of vectors \( \vec{AC} \) and \( \vec{AB} \) using the coordinates of the points A, B and C.

\( \vec{AC} = \lt 0 - 2 , 2-6 , 3 - 7> = \lt -2 , -4 , -4>\)

\( \vec{AB} = \lt 1-2 , 4- 6 , 5 - 7> = \lt -1 , -2 , -2> \)

Note that.

\( \vec{AC} = \lt -2 , -4 , -4> = 2 \lt-1 , -2 , -2> = 2 \vec{AB} \)

Hence

\( \vec{AC} = 2 \vec{AB} \) , k = 2

Hence vectors \( \vec{AC} \) and \( \vec{AB} \) are collinear and therefore the points A, B and C are collinear (on the same line) as shown below in the rectangular system of coordinates.

collinear points in 3D (R3)

Solution to Question 12

a) We first need to write the coordinates of points A, B, C, D, E, F, G and H.

A(0,0,0,), B(2,0,0), C(2,2,0), D(0,2,0), E(0,0,2), F(2,0,2), G(2,2,2), H(0,2,2).

\( \vec{AB} = \lt 2-0,0-0,0-0> = \lt 2,0,0>\)

\( \vec{EF} = \lt2-0,0-0,2-2> = \lt2,0,0>\)

\( \vec{DC} = \lt2-0, 2-2,0-0> = \lt2,0,0> \)

\( \vec{HG} = \lt2- 0 ,2 -2, 2-2 > =\lt2,0,0> \)

\( \vec{AC} = \lt2 - 0 , 2 - 0, 0 - 0> = \lt2,2,0>\)

\( \vec{AG} = \lt2-0,2-2,2-0> = \lt2,2,2>\)

b) The vectors \( \vec{AB}\), \( \vec{EF} \), \( \vec{DC} \) and \( \vec{HG}\) have equal components and are therefore equivalent (equal).

c) Calculate \( \vec{AB} + \vec{BF} + \vec{FG} \) and \( \vec{AC} + \vec{CG} \) and compare.

\( \vec{AB} + \vec{BF} + \vec{FG} = \lt2,0,0> + \lt0,0,2> + \lt0,2,0> = \lt2,2,2> \)

\( \vec{AC} + \vec{CG} = \lt2,2,0> + \lt0,0,2> = \lt2,2,2>\)

Hence \( \vec{AB} + \vec{BF} + \vec{FG} \) = \( \vec{AC} + \vec{CG} \).

d) Find \( || \vec{AG} || = \sqrt{2^2+2^2+2^2} = 2\sqrt{3}\).

e) Unit vector in the same direction as vector \( \vec{AG} \) is given by

\( \dfrac{1}{|| \vec{AG} ||} \vec{AG} = \dfrac{1}{2\sqrt{3}}\lt2,2,2> = \lt1/\sqrt{3} ,1/\sqrt{3} ,1/\sqrt{3} > \)

Refernce and Links