Explore detailed, step-by-step solutions to questions involving scalar and cross products of 3D vectors. This page helps students understand vector operations in three dimensions through clear explanations and practical examples.
Calculate \( \vec{u} \cdot (\vec{u} \times \vec{v}) \) given that \( \vec{u} = \lt a,b,c \gt \) and \( \vec{v} = \lt d,e,f \gt \).
The cross product \( \vec{u} \times \vec{v} \) is a vector perpendicular to both vectors \( \vec{u} \) and \( \vec{v} \). \[ \text{Hence the dot product of two perpendicular vectors } \vec{u} \text{ and } \vec{u} \times \vec{v} \text{ is equal to } 0. \] \[ \vec{u} \cdot (\vec{u} \times \vec{v}) = 0 \]
Find \( k \) so that vectors \( \vec{u} = \lt -2,-k,1 \gt \) and \( \vec{v} = \lt 8,-2,-3 > \) are perpendicular.
If two vectors \( \vec{u} \) and \( \vec{v} \) are perpendicular, then their dot product is equal to 0. Hence: \[ \vec{u} \cdot \vec{v} = \langle -2, -k, 1 \rangle \cdot \langle 8, -2, -3 \rangle = 0 \] Expand the dot product to obtain the equation: \[ (-2)(8) + (-k)(-2) + (1)(-3) = 0 \] Simplify and solve for \( k \): \[ -16 + 2k - 3 = 0 \] \[ k = \dfrac{19}{2} \]
Find \( k \) so that the vectors \( \vec{u} = \lt -3,2,-2 \gt \), \( \vec{v} = \lt 2,1,k > \) and \( \vec{w} = \lt -1,3,-5 > \) are on the same plane (or coplanar)?
Any two vectors lie on the same plane (i.e., they are coplanar). If a third vector also lies on this plane, then the volume of the parallelepiped formed by the three vectors is zero. This volume is calculated using the scalar triple product: \[ \vec{u} \cdot (\vec{v} \times \vec{w}) = 0 \]
The expression \(\vec{u} \cdot (\vec{v} \times \vec{w})\) is called the scalar triple product and can be computed using the determinant of a 3 by 3 matrix: \[ \vec{u} \cdot (\vec{v} \times \vec{w}) = \det \begin{bmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{bmatrix} \] Here, \(u_x, u_y, u_z, v_x, \ldots\) represent the components of the vectors \(\vec{u}, \vec{v}, \vec{w}\).
Substituting the specific vector components into the determinant gives: \[ \vec{u} \cdot (\vec{v} \times \vec{w}) = \det \begin{bmatrix} -3 & 2 & -2 \\ 2 & 1 & k \\ -1 & 3 & -5 \end{bmatrix} \] \[ = -3(-5 - 3k) - 2(-10 + k) - 2(6 + 1) = 21 + 7k \]
For the three vectors to be coplanar, the scalar triple product must equal zero: \[ 21 + 7k = 0 \]
Solving for \(k\): \[ k = -3 \]
Below are the three vectors illustrated lying on the same plane.
Find angle \( \theta \) between the vectors \( \vec{u} = \lt 2,0,1 \gt \) and \( \vec{v} = \lt 8,-2,-3 > \).
Use the definition of the scalar product of two vectors \(\vec{u}\) and \(\vec{v}\) and its expression using the vector components.
Definition: \[ \vec{u} \cdot \vec{v} = \|\vec{u}\| \, \|\vec{v}\| \cos \theta \] where \(\theta\) is the angle between the two vectors. The scalar product is also given by \[ \vec{u} \cdot \vec{v} = u_x v_x + u_y v_y + u_z v_z \] where \(u_x, v_x, u_y, \ldots\) are the components of the vectors \(\vec{u}\) and \(\vec{v}\).
Let us calculate the magnitudes \(\|\vec{u}\|\) and \(\|\vec{v}\|\): \[ \|\vec{u}\| = \sqrt{2^2 + 0^2 + 1^2} = \sqrt{5} \] \[ \|\vec{v}\| = \sqrt{8^2 + (-2)^2 + (-3)^2} = \sqrt{77} \]
We now use the components to find the scalar product: \[ \vec{u} \cdot \vec{v} = (2)(8) + (0)(-2) + (1)(-3) = 13 \]
We now use the definition to find the angle \(\theta\): \[ \vec{u} \cdot \vec{v} = \|\vec{u}\| \, \|\vec{v}\| \cos \theta \] \[ \cos \theta = \dfrac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \, \|\vec{v}\|} = \dfrac{13}{\sqrt{5} \sqrt{77}} \] \[ \theta = \arccos\left( \dfrac{13}{\sqrt{5} \sqrt{77}} \right) = 48.5^\circ \]
Find the vector projection of \( \vec{u} = \lt -1,-1,1 \gt \) onto \( \vec{v} = \lt 2,1,1 > \).
The vector projection of \(\vec{u}\) on \(\vec{v}\) is given by (see formula in Scalar and Cross Products of 3D Vectors): \[ \text{proj}_{\vec{v}}\vec{u} = \dfrac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^2} \vec{v} \] \[ = \dfrac{ \langle -1,-1,1 \rangle \cdot \langle 2,1,1 \rangle }{2^2 + 1^2 + 1^2} \langle 2,1,1 \rangle = \dfrac{(-1)(2) + (-1)(1) + (1)(1)}{6} \langle 2,1,1 \rangle \] \[ = -\dfrac{2}{6} \langle 2,1,1 \rangle = \langle -2/3, -1/3, -1/3 \rangle \]
Vectors \(\vec{u}\), \(\vec{v}\) and \(\text{proj}_{\vec{v}}\vec{u}\) are shown below.
Find that \( k \) so that the points \( A(-1,2,k) \), \( B(-3,6,3) \) and \( C(1,3,6) \) are the vertices of a right triangle with a right angle at \( A \).
For triangle ABC to be right at A, the vectors \(\vec{AB}\) and \(\vec{AC}\) have to be perpendicular and therefore their scalar product is equal to 0. We start by calculating the components of the vectors. \[ \vec{AB} = \langle -2, 4, 3 - k \rangle \] \[ \vec{AC} = \langle 2, 1, 6 - k \rangle \] Scalar product of \(\vec{AB}\) and \(\vec{AC}\) has to be zero. \[ \langle -2, 4, 3 - k \rangle \cdot \langle 2, 1, 6 - k \rangle = 0 \] \[ -4 + 4 + (3 - k)(6 - k) = 0 \] Simplify and solve for \(k\). \[ \text{Two solutions: } k = 3 \text{ and } k = 6 \]
Given vector \( \vec{v} = \lt 3,-1,-2 \gt \), find vector \( \vec{u} \) such that \( \vec{v} \times \vec{u} = \lt 4,2,5 > \) and \( ||\vec{u}|| = 3\).
Let \( a, b, c \) be the components of vector \( \vec{u} \). Hence \[ \vec{v} \times \vec{u} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & -1 & -2 \\ a & b & c \end{vmatrix} \] \[ = \begin{vmatrix} -1 & -2 \\ b & c \end{vmatrix} \vec{i} - \begin{vmatrix} 3 & -2 \\ a & c \end{vmatrix} \vec{j} + \begin{vmatrix} 3 & -1 \\ a & b \end{vmatrix} \vec{k} = (-c + 2b)\vec{i} + (-2a - 3c)\vec{j} + (3b + a)\vec{k} \]
We now write that the components of \( \vec{v} \times \vec{u} \) and \( \langle 4, 2, 5 \rangle \) are equal as given above. Hence \[ -c + 2b = 4 \] \[ -2a - 3c = 2 \] \[ 3b + a = 5 \]
Note that the equations in the above system are not independent (add -3 times the first equation \( -c + 2b = 4 \) to the second equation \( -2a - 3c = 2 \) and you will obtain an equation equivalent to the third equation \( 3b + a = 5 \)) and therefore it has many solutions. Let \( a = t \) and use the second equation to find \( c \): \[ -2t - 3c = 2 \] \[ c = \dfrac{2 + 2t}{-3} \]
Let \( a = t \) again and use the third equation to find \( b \): \[ 3b + t = 5 \] \[ b = \dfrac{5 - t}{3} \]
We now use the condition \( ||\vec{u}|| = 3 \) to write the equation: \[ \sqrt{a^2 + b^2 + c^2} = 3 \]
Square both sides of the above equation and substitute \( a, b, c \) by their expressions in terms of \( t \): \[ t^2 + \left( \dfrac{5 - t}{3} \right)^2 + \left( \dfrac{2 + 2t}{-3} \right)^2 = 9 \]
Multiply all terms of the equation by 9 and simplify: \[ 9t^2 + (5 - t)^2 + (2 + 2t)^2 = 81 \]
Expand the above to obtain a quadratic equation and solve it to find \[ t = 2 \quad \text{and} \quad t = -\dfrac{13}{7} \]
Hence two solutions for vector \( \vec{u} \): For \( t = 2 \): \[ \vec{u}_1 = \langle t, \dfrac{5 - t}{3}, \dfrac{2 + 2t}{-3} \rangle = \langle 2, 1, -2 \rangle \]
For \( t = -\dfrac{13}{7} \): \[ \vec{u}_2 = \langle t, \dfrac{5 - t}{3}, \dfrac{2 + 2t}{-3} \rangle = \langle -\dfrac{13}{7}, \dfrac{16}{7}, \dfrac{4}{7} \rangle \]
Points \( A, B, C \) and \( D \) forms a parallelogram.
a) Find the coordinates of point \(D\).
b) Find the area of a parallelogram.

a) Let \( a, b \) and \( c \) be the coordinates of point \( D \), and determine the components of the vectors \( \vec{AB} \) and \( \vec{DC} \). \[ \vec{AB} = \langle 2 - 4 ,\ 2 - 6 ,\ 4 - 2 \rangle = \langle -2, -4, 2 \rangle \] \[ \vec{DC} = \langle -2 - a ,\ -3 - b ,\ 1 - c \rangle \]
For points \( A, B, C \), and \( D \) to form a parallelogram, vectors \( \vec{AB} \) and \( \vec{DC} \) must be equal. Therefore, we have the following vector equation: \[ \langle -2, -4, 2 \rangle = \langle -2 - a, -3 - b, 1 - c \rangle \]
This yields the following three algebraic equations: \[ -2 - a = -2 \] \[ -3 - b = -4 \] \[ 1 - c = 2 \]
Solving these equations gives the coordinates of point \( D \): \[ D(0, 1, -1) \] b) The area \( A \) of the parallelogram is given by: \[ A = \left\| \vec{AB} \times \vec{BC} \right\| \]
First, compute the cross product: \[ \vec{AB} \times \vec{BC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & -4 & 2 \\ -4 & -5 & -3 \end{vmatrix} = \begin{vmatrix} -4 & 2 \\ -5 & -3 \end{vmatrix} \vec{i} - \begin{vmatrix} -2 & 2 \\ -4 & -3 \end{vmatrix} \vec{j} + \begin{vmatrix} -2 & -4 \\ -4 & -5 \end{vmatrix} \vec{k} \] \[ = 22\vec{i} + 14\vec{j} -6\vec{k} \]
Now compute the magnitude of this cross product to get the area: \[ A = \left\| \vec{AB} \times \vec{BC} \right\| = \sqrt{22^2 + 14^2 + (-6)^2} = 2\sqrt{179} \]
In the cube below find the angle between the diagonals \( AG \) and \( BH \).
We first find the components of the vectors \(\vec{AG}\) and \(\vec{BH}\). \[ \vec{AG} = \langle 2, 2, 2 \rangle \] \[ \vec{BH} = \langle -2, 2, 2 \rangle \]
Using the dot product, with \(\theta\) being the angle between the vectors \(\vec{AG}\) and \(\vec{BH}\), we have (see question 5 above): \[ \cos \theta = \dfrac{\vec{AG} \cdot \vec{BH}}{||\vec{AG}|| \cdot || \vec{BH} ||} = \dfrac{2\cdot (-2)+2\cdot2+2\cdot2}{\sqrt{2^2+2^2+2^2}\sqrt{(-2)^2+2^2+2^2}} = \dfrac{1}{3} \] \[ \theta = \arccos \left( \dfrac{1}{3} \right) \approx 70.5^{\circ} \]
Find a vector that is orthogonal to the plane containing the points \( A(1,2,-3), B(0,-2,1), \text{ and } C(-2,0,1) \).
To find a vector orthogonal to the plane containing points \( A(1,2,-3) \), \( B(0,-2,1) \), and \( C(-2,0,1) \), we first compute two vectors in the plane: \[ \vec{AB} = \langle 0 - 1,\ -2 - 2,\ 1 - (-3) \rangle = \langle -1, -4, 4 \rangle \] \[ \vec{AC} = \langle -2 - 1,\ 0 - 2,\ 1 - (-3) \rangle = \langle -3, -2, 4 \rangle \] Next, compute the cross product \( \vec{AB} \times \vec{AC} \) to find a vector orthogonal to both (and thus normal to the plane): \[ \vec{AB} \times \vec{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -1 & -4 & 4 \\ -3 & -2 & 4 \end{vmatrix} = \left( (-4)(4) - (4)(-2) \right)\vec{i} - \left( (-1)(4) - (4)(-3) \right)\vec{j} + \left( (-1)(-2) - (-4)(-3) \right)\vec{k} \] \[ = (-16 + 8)\vec{i} - (-4 + 12)\vec{j} + (2 - 12)\vec{k} = \langle -8, -8, -10 \rangle \] Thus, a vector orthogonal to the plane is: \[ {\langle -8, -8, -10 \rangle} \]
Find the area of the triangle whose vertices are the points \( A(1, 0, -3), \quad B(1, -2, 0), \quad \text{and} \quad C(0, 2, 1) \).
The area \( A \) of a triangle is given by half the magnitude of the cross product \( A_t \) of any two vectors made by the sides of the triangle. Hence
\( A_t = \vec{AB} \times \vec{AC} = {\begin{vmatrix}\vec{i}& \vec{j} &\vec{k} \\ 0 & -2 & 3 \\ -1 & 2 & 4 \end{vmatrix}} = {\begin{vmatrix} -2 & 3 \\ 2 & 4 \end{vmatrix}} \vec{i} - {\begin{vmatrix}0 & 3\\ -1 & 4\end{vmatrix}} \vec{j} + {\begin{vmatrix}0 & -2\\ -1& 2\end{vmatrix}} \vec{k} = -14\vec{i} - 3\vec{j} -2\vec{k} \)
\( A_t = (1/2) || \vec{AB} \times \vec{AC} || = \sqrt{(-14)^2 + (-3)^2 + (-2)^2} = (1/2) \sqrt{209} \) unit2
Find the volume of the parallelepiped shown below.
The volume \( V \) of the parallelepiped is given by \[ V = |\vec{u} \cdot (\vec{v} \times \vec{w})| = |\vec{v} \cdot (\vec{w} \times \vec{u})| = |\vec{w} \cdot (\vec{v} \times \vec{u})| \] Let us first find the components of the vectors \( \vec{u} \), \( \vec{v} \), and \( \vec{w} \). \[ \vec{u} = \langle -3, 0, 7 \rangle \] \[ \vec{v} = \langle -8, 0, 0 \rangle \] \[ \vec{w} = \langle 0, -9, 0 \rangle \] \[ \vec{u} \cdot (\vec{v} \times \vec{w}) = \langle -3 , 0 , 7 \rangle \cdot \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -8 & 0 & 0 \\ 0 & -9 & 0 \end{vmatrix} \] \[ = \langle -3 , 0 , 7 \rangle \cdot \left\{ \begin{vmatrix} 0 & 0 \\ -9 & 0 \end{vmatrix} \vec{i} - \begin{vmatrix} -8 & 0 \\ 0 & 0 \end{vmatrix} \vec{j} + \begin{vmatrix} -8 & 0 \\ 0 & -9 \end{vmatrix} \vec{k} \right\} \] \[ = \langle -3 , 0 , 7 \rangle \cdot \langle 0 , 0 , 72 \rangle = 0 + 0 + 7 \cdot 72 = 504 \] The volume is \[ V = |504| = 504 \quad \text{unit}^3 \]