Learn how to simplify expressions involving inverse trigonometric functions in Grade 12 math. This page includes practice questions with step-by-step solutions and clear explanations to help you master this important topic.
sin and arcsin are inverse of each other and therefore the properties of inverse functions may be used to write : \[ \sin(\arcsin(x)) = x, \quad \text{for } -1 \leq x \leq 1 \] \[ \arcsin(\sin(x)) = x, \quad \text{for } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \]
NOTE:
If \( x \) in \( \arcsin(\sin(x)) \) is not in the interval \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\), find \( \theta \) in the interval \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\) such that \[ \sin(x) = \sin(\theta) \] and then simplify: \[ \arcsin(\sin(x)) = \theta \]
Cosine and arccosine are inverse functions of each other. Therefore, the properties of inverse functions can be used to write: \[ \cos(\arccos(x)) = x, \quad \text{for } -1 \leq x \leq 1 \] \[ \arccos(\cos(x)) = x, \quad \text{for } x \in [0, \pi] \]
NOTE:
If \( x \) in \( \arccos(\cos(x)) \) is not in the interval \([0, \pi]\), find \( \theta \) in the interval \([0, \pi] \) such that \( \cos(x) = \cos(\theta) \), and then simplify \( \arccos(\cos(x)) = \theta \).
tan and arctan are inverse of each other and therefore the properties of inverse functions may be used to write
\[ \tan(\arctan(x)) = x \] \[ \arctan(\tan(x)) = x \quad \text{for } x \in \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \]NOTE:
If \( x \) in \( \arctan(\tan(x)) \) is not in the interval \( \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \), find \( \theta \) in the interval \( \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \) such that \( \tan(x) = \tan(\theta) \) and then simplify \( \arctan(\tan(x)) = \theta \)
Express the following as algebraic expressions: \[ \sin(\arccos(x)) \] and \[ \tan(\arccos(x)) \]
Let \( A = \arccos(x) \). Hence, \[ \cos(A) = \cos(\arccos(x)) = x \]
Use a right triangle with angle \( A \) such that \( \cos(A) = x \) (or \( \frac{x}{1} \)). Find the second leg and calculate \( \sin(A) \) and \( \tan(A) \).
Express the following as algebraic expressions: \[ \cos(\arcsin(x)) \] and \[ \tan(\arcsin(x)) \]
Let \( A = \arcsin(x) \). Hence, \[ \sin(A) = \sin(\arcsin(x)) = x \]
Use a right triangle with angle \( A \) such that \( \sin(A) = x \) (or \( \frac{x}{1} \)), find the second leg and calculate \( \cos(A) \) and \( \tan(A) \).
\[
\cos(\arcsin(x)) = \cos(A) = \frac{\sqrt{1 - x^2}}{1} = \sqrt{1 - x^2} \quad \text{for } x \in [-1, 1]
\]
\[
\tan(\arcsin(x)) = \tan(A) = \frac{x}{\sqrt{1 - x^2}} \quad \text{for } x \in (-1, 1)
\]
Express the following as algebraic expressions: \[ \sin(\arctan(x)) \] and \[ \cos(\arctan(x)) \]
Let \( A = \arctan(x) \). Hence, \[ \tan(A) = \tan(\arctan(x)) = x \]
Use a right triangle with angle \( A \) such that \( \tan(A) = x \) (or \( \frac{x}{1} \)). Find the hypotenuse and calculate \( \sin(A) \) and \( \cos(A) \).
\[
\sin(\arctan(x)) = \sin(A) = \frac{x}{\sqrt{1 + x^2}}
\]
\[
\cos(\arctan(x)) = \cos(A) = \frac{1}{\sqrt{1 + x^2}}
\]
Simplify the following expressions:
Use definition. \[ \arccos(0) = \frac{\pi}{2} \quad \text{because} \quad \cos\left(\frac{\pi}{2}\right) = 0 \quad \text{and} \quad \frac{\pi}{2} \in [0, \pi] \] \[ \arcsin(-1) = -\frac{\pi}{2} \quad \text{because} \quad \sin\left(-\frac{\pi}{2}\right) = -1 \quad \text{and} \quad -\frac{\pi}{2} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \] \[ \arctan(-1) = -\frac{\pi}{4} \quad \text{because} \quad \tan\left(-\frac{\pi}{4}\right) = -1 \quad \text{and} \quad -\frac{\pi}{4} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \]
Simplify inner functions then the outer functions using definitions. \[ \sin(\arcsin(-\frac{1}{2})) = \sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2} \] \[ \arccos(\cos(\frac{\pi}{2})) = \arccos(0) = \frac{\pi}{2} \] \[ \arccos(\cos(-\frac{\pi}{2})) = \arccos(0) = \frac{\pi}{2} \]
Simplify inner functions then the outer functions using definitions. \[ \cos(\arcsin(-\frac{1}{2})) = \cos\left(-\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] \[ \arcsin(\sin(\frac{\pi}{3})) = \arcsin\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} \] \[ \arcsin(\tan(\frac{3\pi}{4})) = \arcsin(-1) = -\frac{\pi}{2} \]
Simplify inner functions then the outer functions using definitions. \[ \arccos\big(\tan(7\pi/4)\big) = \arccos(-1) = \pi \] \[ \arcsin\big(\sin(13\pi/3)\big) = \arcsin\big(\sin(4\pi + \pi/3)\big) = \arcsin\big(\sin(\pi/3)\big) = \pi/3 \] \[ \arctan\big(\tan(-17\pi/4)\big) = \arctan\big(\tan(-4\pi - \pi/4)\big) = \arctan\big(\tan(-\pi/4)\big) = -\pi/4 \] \[ \arcsin\big(\sin(9\pi/5)\big) = \arcsin\big(\sin(2\pi - \pi/5)\big) = \arcsin\big(\sin(-\pi/5)\big) = -\pi/5 \]
Let \( A = \arcsin(2/3) \) and \( B = \arccos(-1/2) \). Find the exact value of \( \sin(A + B) \).
Write \( Y = \sin(2 \arcsin(x)) \) as an algebraic expression.
Let \( A = \arcsin(x) \). Hence \( Y \) may be written as \[ Y = \sin(2A) \] Use the identity \[ \sin(2A) = 2 \sin(A) \cos(A) \] to rewrite \( Y \) as follows: \[ Y = 2 \sin(A) \cos(A) = 2 \sin(\arcsin(x)) \cos(\arcsin(x)) \] Use the identities \[ \sin(\arcsin(x)) = x \quad \text{and} \quad \cos(\arcsin(x)) = \sqrt{1 - x^2} \] to rewrite \( Y \) as follows: \[ Y = 2 x \sqrt{1 - x^2} \]
Find the exact value of \( Y = \sin(2 \arctan(3/4)) \).
Let \( A = \arctan\left(\frac{3}{4}\right) \). Hence \( Y \) may be written as \[ Y = \sin(2A) = 2 \sin(A) \cos(A) \] \[ \sin(A) = \sin\left(\arctan\left(\frac{3}{4}\right)\right) = \frac{\frac{3}{4}}{\sqrt{1 + \left(\frac{3}{4}\right)^2}} = \frac{3}{5} \] \[ \cos(A) = \cos\left(\arctan\left(\frac{3}{4}\right)\right) = \frac{1}{\sqrt{1 + \left(\frac{3}{4}\right)^2}} = \frac{4}{5} \] \[ Y = 2 \times \frac{3}{5} \times \frac{4}{5} = \frac{24}{25} \]