Diagonal Matrices
Page Content
Definition of a Diagonal Matrix
A diagonal matrix is a square matrix in which all entries off the main diagonal are zero.
These are examples of diagonal matrices.
\[
A =
\begin{bmatrix}
-6 & 0 \\
0 & 9
\end{bmatrix}
\qquad
B =
\begin{bmatrix}
9 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]
\[
C =
\begin{bmatrix}
-1 & 0 & 0 & 0 \\
0 & 7 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -5
\end{bmatrix}
\qquad
D =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Properties of the Diagonal Matrices
Some of the most important properties of the diagonal matrices are given below.
- The determinant of a diagonal matrix is equal to the product of all entries in the main diagonal.
- A diagonal matrix is a symmetric matrix.
- A diagonal matrix is invertible (it has an inverse) if and only if none of its entries in the main diagonal is zero.
Addition and Multiplication of Diagonal Matrices
Let A and B be two diagonal matrices of the same size \( n \times n \) given by
\[
A =
\begin{bmatrix}
a_{11} & 0 & 0 & \cdots \\
0 & a_{22} & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots \\
0 & 0 & \cdots & a_{nn}
\end{bmatrix}
\]
and
\[
B =
\begin{bmatrix}
b_{11} & 0 & 0 & \cdots \\
0 & b_{22} & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots \\
0 & 0 & \cdots & b_{nn}
\end{bmatrix}
\]
Addition:
\[
A + B =
\begin{bmatrix}
a_{11} + b_{11} & 0 & 0 & \cdots \\
0 & a_{22} + b_{22} & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots \\
0 & 0 & \cdots & a_{nn} + b_{nn}
\end{bmatrix}
\]
Multiplication:
\[
AB =
\begin{bmatrix}
a_{11} b_{11} & 0 & 0 & \cdots \\
0 & a_{22} b_{22} & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots \\
0 & 0 & \cdots & a_{nn} b_{nn}
\end{bmatrix}
\]
Inverse of Diagonal Matrices
Let \( A \) be a diagonal matrix given by \( A =
\begin{bmatrix}
a_{11} & 0 & 0 & ... \\
0 & a_{22} & 0 & ... \\
. & & & \\
. & & & \\
. & & & \\
0 & 0 & ... & a_{nn}
\end{bmatrix} \)
If none of the entries \( a_{ii} \) in the main diagonal is equal to zero, then \( A \) is invertible and its inverse is given by \[ A^{-1} =
\begin{bmatrix}
\dfrac{1}{a_{11}} & 0 & 0 & ... \\
0 & \dfrac{1}{a_{22}} & 0 & ... \\
. & & & \\
. & & & \\
. & & & \\
0 & 0 & ... & \dfrac{1}{a_{nn}}
\end{bmatrix} \]
Power of Diagonal Matrices
Let \( A \) be a diagonal matrix given by \( A =
\begin{bmatrix}
a_{11} & 0 & 0 & ... \\
0 & a_{22} & 0 & ... \\
. & & & \\
. & & & \\
. & & & \\
0 & 0 & ... & a_{nn}
\end{bmatrix} \)
\[ A^p =
\begin{bmatrix}
a_{11}^p & 0 & 0 & ... \\
0 & a_{22}^p & 0 & ... \\
. & & & \\
. & & & \\
. & & & \\
0 & 0 & ... & a_{nn}^p
\end{bmatrix} \] where \( p \) is a positive integer.
<
Let \( A \) be a diagonal matrix given by \[ A =
\begin{bmatrix}
a_{11} & 0 & 0 & ... \\
0 & a_{22} & 0 & ... \\
. & & & \\
. & & & \\
. & & & \\
0 & 0 & ... & a_{nn}
\end{bmatrix} \]
The eigenvalues \( \lambda_i \) and corresponding eigenvectors \( e_i \) are given by
\[ \lambda_1 = a_{11} \; , \quad e_1
=
\begin{bmatrix}
1 \\
0 \\
0 \\
. \\
. \\
0
\end{bmatrix} \] \[ \lambda_2 = a_{22} \; , \quad
e_2 = \begin{bmatrix}
0 \\
1 \\
0 \\
. \\
. \\
0
\end{bmatrix} \]
... etc ...
\[ \lambda_n = a_{nn} \; , \quad e_{n}
=
\begin{bmatrix}
0 \\
0 \\
0 \\
. \\
. \\
1
\end{bmatrix} \]
Examples with Solutions
Example 1
Which of the following are diagonal matrices?
a) \( A =
\begin{bmatrix}
0 & 0 \\
1 & 2
\end{bmatrix} \) b) \( B =
\begin{bmatrix}
-2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 1
\end{bmatrix} \) c) \( C =
\begin{bmatrix}
5 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 3 & 0\\
5 & 0 & 0 & 4
\end{bmatrix} \)
d) \( D =
\begin{bmatrix}
5 & 0 & 0 & 0\\
0 & -1 & 0 & 0\\
0 & 0 & 9 & 0\\
0 & 0 & 0 & -1
\end{bmatrix} \)
Solution
Matrices \( B \) and \( D \) are diagonal matrices.
Example 2
Matrices \( A \) and \( B \) are given by \( A =
\begin{bmatrix}
-1 & 0 & 0\\
0 & -\dfrac{2}{3} & 0 \\
0 & 0 & \dfrac{1}{4}
\end{bmatrix} \) , \( B =
\begin{bmatrix}
-1 & 0 & 0\\
0 & -6 & 0 \\
0 & 0 & 8
\end{bmatrix} \).
Calculate \( A B \)
Solution
\( A B =
\begin{bmatrix}
-1 & 0 & 0\\
0 & -\dfrac{2}{3} & 0 \\
0 & 0 & \dfrac{1}{4}
\end{bmatrix}
\begin{bmatrix}
-1 & 0 & 0\\
0 & -6 & 0 \\
0 & 0 & 8
\end{bmatrix}
\)
\( \quad \quad =
\begin{bmatrix}
(-1)(-1) & 0 & 0\\
0 & (-\dfrac{2}{3})(-6) & 0 \\
0 & 0 & (\dfrac{1}{4})(8)
\end{bmatrix}
\)
\(
\quad \quad =
\begin{bmatrix}
1 & 0 & 0\\
0 & 4 & 0 \\
0 & 0 & 2
\end{bmatrix}
\)
Example 3
Let matrix \( A =
\begin{bmatrix}
-1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & - 2
\end{bmatrix} \)
Calculate \( A^5 \).
Solution
\( A^5 =
\begin{bmatrix}
(-1)^5 & 0 & 0 & 0 \\
0 & (2)^5 & 0 & 0 \\
0 & 0 & (-1)^5 & 0 \\
0 & 0 & 0 & (-2)^5
\end{bmatrix}
\)
Simplify
\( \quad \quad =
\begin{bmatrix}
-1 & 0 & 0 & 0 \\
0 & 32 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -32
\end{bmatrix}
\)
Example 4
Find the eigenvalues and eigenvectors of the matrix
\( A =
\begin{bmatrix}
1 & 0\\
0 & -3
\end{bmatrix} \)
Solution
Eigenvalue: \( \lambda_1 = 1 \) , Eigenvector: \( e_1 = \begin{bmatrix}
1 \\
0
\end{bmatrix} \)
Eigenvalue: \( \lambda_2 = -3 \) , Eigenvector: \( e_2 = \begin{bmatrix}
0 \\
1
\end{bmatrix} \)
Example 5
Find the eigenvalues and eigenvectors of the matrix
\( A =
\begin{bmatrix}
-6 & 0 & 0\\
0 & \dfrac{1}{5} & 0 \\
0 & 0 & - \dfrac{2}{3}
\end{bmatrix} \)
Solution
Eigenvalue: \( \lambda_1 = -6 \) , Eigenvector: \( e_1 = \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} \)
Eigenvalue: \( \lambda_2 = \dfrac{1}{5} \) , Eigenvector: \( e_2 = \begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} \)
Eigenvalue: \( \lambda_3 = - \dfrac{2}{3} \) , Eigenvector: \( e_3 = \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \)
Example 6
Find the eigenvalues and eigenvectors of the matrix
\( A =
\begin{bmatrix}
1 & 0 & 0 & 0\\
0 & -1 & 0 & 0\\
0 & 0 & 9 & 0\\
0 & 0 & 0 & 1
\end{bmatrix} \)
Solution
Eigenvalue: \( \lambda_1 = 1 \) , Eigenvector: \( e_1 = \begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix} \)
Eigenvalue: \( \lambda_2 = -1 \) , Eigenvector: \( e_2 = \begin{bmatrix}
0 \\
1 \\
0 \\
0
\end{bmatrix} \)
Eigenvalue: \( \lambda_3 = 9 \) , Eigenvector: \( e_3 = \begin{bmatrix}
0 \\
0 \\
1 \\
0
\end{bmatrix} \)
Eigenvalue: \( \lambda_4 = 1 \) , Eigenvector: \( e_4 = \begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix} \)
Questions (with solutions given below)
- Part 1
Find the real constants \( a \) and \( b \) such that \( A^{-1} = A \) where \( A \) is a matrix given by \( A =
\begin{bmatrix}
1 & 0 & 0 & 0\\
0 & \dfrac{1}{a} & 0 & 0\\
0 & 0 & b+1 & 0\\
0 & 0 & 0 & 1
\end{bmatrix} \)
- Part 2
Find the eigenvalues and eigenvectors of the matrix
\( A =
\begin{bmatrix}
1 & 0 & 0\\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix} \)
- Part 3
Find the eigenvalues and eigenvectors of the matrix
\( A =
\begin{bmatrix}
2 & 0 & 0 & 0\\
0 & 2 & 0 & 0\\
0 & 0 & -2 & 0\\
0 & 0 & 0 & -2
\end{bmatrix} \)
Solutions to the Above Questions
- Part 1
We first find the inverse of the given matrix
\( A^{-1} =
\begin{bmatrix}
1 & 0 & 0 & 0\\
0 & a & 0 & 0\\
0 & 0 & \dfrac{1}{b+1} & 0\\
0 & 0 & 0 & 1
\end{bmatrix} \)
In order to have \( A^{-1} = A \), we need to have
\( a = \dfrac{1}{a} \) (I) and \( \dfrac{1}{b+1} = b + 1 \) (II)
Solve the above equations. Equation (I) may be written as
\( a^2 = 1 \)
and gives two solutions: \( a = 1 \) and \( a = - 1\)
Equation (II) may be written as
\( (b+1)^2 = 1 \)
and gives two solutions: \( b = 0 \) and \( b = - 2 \)
Hence the solutions to the given questions are the following pairs:
\( a = 1 \) , \( b = 0 \)
\( a = 1 \) , \( b = -2 \)
\( a = - 1 \) , \( b = 0 \)
\( a = - 1 \) , \( b = -2 \)
- Part 2
Eigenvalue: \( \lambda_1 = 1 \) , Eigenvector: \( e_1 = \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} \)
Eigenvalue: \( \lambda_2 = 1 \) , Eigenvector: \( e_2 = \begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} \)
Eigenvalue: \( \lambda_3 = 0 \) , Eigenvector: \( e_3 = \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \)
- Part 3
Eigenvalue: \( \lambda_1 = 2 \) , Eigenvector: \( e_1 = \begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix} \)
Eigenvalue: \( \lambda_2 = 2 \) , Eigenvector: \( e_2 = \begin{bmatrix}
0 \\
1 \\
0 \\
0
\end{bmatrix} \)
Eigenvalue: \( \lambda_3 = -2 \) , Eigenvector: \( e_3 = \begin{bmatrix}
0 \\
0 \\
1 \\
0
\end{bmatrix} \)
Eigenvalue: \( \lambda_4 = -2 \) , Eigenvector: \( e_4 = \begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix} \)
More References and links