Orthogonal Matrices - Examples with Solutions
Definition of Orthogonal Matrices
An n × n matrix whose columns form an orthonormal set is called an orthogonal matrix.
As a reminder, a set of vectors is orthonormal if each vector is a unit vector ( length or norm of the vector is equal to n × n and each vector in the set is orthogonal to all other vectors in the set.
These are examples of orthogonal matrices.
Properties of Orthogonal Matrices
A list of the most important properties of orthogonal matrices is given below. If Q is an orthogonal matrix, then
- Q-1 = QT ; this is the most important property of orthogonal matrices as the inverse is simply the transpose.
- the rows of Q form an orthonormal set.
- Q-1 is an orthogonal matrix
- Det( Q ) = ± 1
- if ? is an eigrnvalue of ( Q ) , then | ? | = 1
- if Q1 and Q2 are n × n orthogonal matrices, then Q1 Q2 is also an orthogonal matrix.
Examples with Solutions
\( \) \( \)\( \)
Example 1
The matrices \( Q_1 =
\begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix} \) and \( Q_2 =
\begin{bmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{bmatrix} \) are orthogonal. Verify that the product \( Q_1 Q_2 \) is also orthogonal (Property 6 above)
Solution
We first calculate the product \( Q_1 Q_2 \)
\( Q_1 Q_2 =
\begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{bmatrix}
=
\begin{bmatrix}
0&0&-1\\
0&-1&0\\
1&0&0
\end{bmatrix}
\)
Let \( \textbf v_1 , \textbf v_2 , \textbf v_3 \) be the columns of the matrix \( Q_1 Q_2 \) found above.
\( \textbf {v}_1 = \begin{bmatrix}
0\\
0\\
1
\end{bmatrix} \) , \( \textbf {v}_2 = \begin{bmatrix}
0\\
-1\\
0
\end{bmatrix} \) ,
\( \textbf {v}_3 = \begin{bmatrix}
-1\\
0\\
0
\end{bmatrix} \)
Let us calculate the length or norm of each column
\( || \textbf {v}_1 || = \sqrt {0^2+0^2+1^2} = 1 \)
\( || \textbf {v}_2 || = \sqrt {0^2+(-1)^2+0^2} = 1 \)
\( || \textbf {v}_3 || = \sqrt {(-1)^2+0^2+0^2} = 1 \)
All three vectors are unit vectors.
Calculate the inner product of all pairs of vectors that can be made from the vectors \( \textbf v_1 , \textbf v_2 , \textbf v_3 \)
\( \textbf {v}_1 \cdot \textbf {v}_2 = 0 \cdot 0 + 0 \cdot (-1) + 1 \cdot 0 = 0 \)
\( \textbf {v}_1 \cdot \textbf {v}_3 = 0 \cdot (-1) + 0 \cdot 0 + 1 \cdot 0 = 0 \)
\( \textbf {v}_2 \cdot \textbf {v}_3 = 0 \cdot (-1) + (-1) \cdot 0 + 0 \cdot 0 = 0 \)
The three vectors form an orthogonal set.
The three columns of the matrix \( Q_1 Q_2 \) are orthogonal and have norm or length equal to 1 and are therefore orthonormal.
Example 2
Use a calculator to find the inverse of the orthogonal
matrix \( Q =
\begin{bmatrix}
0 & 0 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{bmatrix} \) and verify Property 1 above.
Solution
Use any matrix calculator to find
\( Q^{-1} =
\begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & -1 \\
1 & 0 & 0
\end{bmatrix} \)
Find the transpose of matrix \( Q \)
\( Q^T =
\begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & -1 \\
1 & 0 & 0
\end{bmatrix} \)
Hence \( Q^{-1} = Q^T \) , property 1 above.
Example 3
Find the real constants \( a \) and \( b \) in the matrix \( Q =
\begin{bmatrix}
-1 & 0 & 0 \\
0 & \dfrac{1}{\sqrt 2} & a \\
0 & \dfrac{1}{\sqrt 2} & b
\end{bmatrix} \) such that \( Q \) is orthogonal.
Solution
Let \( \textbf v_1 , \textbf v_2 , \textbf v_3 \) be the columns of the matrix \( Q \) given above such that
\( \textbf {v}_1 = \begin{bmatrix}
-1\\
0\\
0
\end{bmatrix} \) , \( \textbf {v}_2 = \begin{bmatrix}
0\\
\dfrac{1}{\sqrt 2}\\
\dfrac{1}{\sqrt 2}
\end{bmatrix} \) ,
\( \textbf {v}_3 = \begin{bmatrix}
0\\
a\\
b
\end{bmatrix} \)
Two sets of conditions for matrix \( Q \) to be orthogonal:
1) The norm of each column \( \textbf v_1 , \textbf v_2 , \textbf v_3 \) must equal to 1
\( || \textbf v_1 || = \sqrt {(-1)^2+0^2+0^2} = 1 \)
\( || \textbf v_2 || = \sqrt {0^2+ \left(\dfrac{1}{\sqrt 2} \right)^2+\left(\dfrac{1}{\sqrt 2} \right)^2 } = 1 \)
\( || \textbf v_3 || = \sqrt {0^2+a^2+b^2} = \sqrt {a^2+b^2} = 1 \) (I)
2) The inner product of any two vectors must be equal to zero (orthogonal vectors)
\( \textbf {v}_1 \cdot \textbf {v}_2 = (-1) \cdot 0 + 0 \cdot \left(\dfrac{1}{\sqrt 2} \right) + 0 \cdot \left(\dfrac{1}{\sqrt 2} \right) = 0 \)
\( \textbf {v}_1 \cdot \textbf {v}_3 = (-1) \cdot 0 + 0 \cdot a + 0 \cdot b = 0 \)
\( \textbf {v}_2 \cdot \textbf {v}_3 = 0 \cdot 0 + \dfrac{1}{\sqrt 2} \cdot a + \dfrac{1}{\sqrt 2} \cdot b = \dfrac{1}{\sqrt 2} \cdot a + \dfrac{1}{\sqrt 2} \cdot b = 0 \) (II)
For all conditions to be satisfied, we need to solve equations (I) and (II) above
Equation (II) above gives \( a = - b \)
Substitute \( a \) by \( - b \) in equation (I) to obtain
\( \sqrt {2 b^2 } = 1 \)
Solve to obtain
\( b = \pm \dfrac{1}{\sqrt 2} \)
Two solutions to the above question
\( a = - \dfrac{1}{\sqrt 2} \) and \( b = \dfrac{1}{\sqrt 2} \)
\( a = \dfrac{1}{\sqrt 2} \) and \( b = - \dfrac{1}{\sqrt 2} \)
Questions (with solutions given below)
- Part 1
Matrix
\( Q = \begin{bmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix} \) is orthogonal. Verify the first 5 properties, listed above, for matrix \( Q \).
- Part 2
1) Which of the following matrices are orthogonal?
a) \( A = \begin{bmatrix}
\dfrac{1}{\sqrt 2} & \dfrac{1}{\sqrt 2} \\
- \dfrac{1}{\sqrt 2} & \dfrac{1}{\sqrt 2}
\end{bmatrix} \) ,
b) \( B = \begin{bmatrix}
-1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{bmatrix} \) ,
c) \( C = \begin{bmatrix}
\dfrac{1}{\sqrt {10}} & - \dfrac{3}{\sqrt {10}} & 0 \\
0 & 0 & 1 \\
\dfrac{3}{\sqrt {10}} & \dfrac{1}{\sqrt {10}} & 0
\end{bmatrix} \)
- Part 3
1) Find all matrices of the form \( A = \begin{bmatrix}
p & q\\
\dfrac{1}{\sqrt {3}} & r
\end{bmatrix} \) that are orthogonal.
- Part 4
Find the inverse of matrix \( A = \begin{bmatrix}
0 & \dfrac{5}{3 \sqrt 5} & \dfrac{2}{3} \\
\dfrac{1}{\sqrt 5} & - \dfrac{4}{3 \sqrt 5} & \dfrac{2}{3} \\
\dfrac{2}{\sqrt 5} & \dfrac{2}{3 \sqrt 5} & - \dfrac{1}{3}
\end{bmatrix} \)
- Part 1
Property 1
Use a calculator to calculate \( Q^{-1} \)
\( Q^{-1} =
\begin{bmatrix}0&-1&0\\ 1&0&0\\ 0&0&1\end{bmatrix}
\)
Determine \( Q^T \)
\( Q^T =
\begin{bmatrix}0&-1&0\\ 1&0&0\\ 0&0&1\end{bmatrix}
\)
We conclude that \( Q^{-1} = Q^T \)
Property 2
The rows of \( Q \) may be represented by the vectors
\( \textbf {v}_1 = \begin{bmatrix}
0\\
1\\
0
\end{bmatrix} \) , \( \textbf {v}_2 = \begin{bmatrix}
-1\\
0\\
0
\end{bmatrix} \) ,
\( \textbf {v}_3 = \begin{bmatrix}
0\\
0\\
1
\end{bmatrix} \)
Calculate the length or norm of each vector
\( ||\textbf {v}_1 || = \sqrt {0^2+1^2+0^2} = 1 \)
\( ||\textbf {v}_2 || = \sqrt {(-1)^2+0^2+0^2} = 1 \)
\( ||\textbf {v}_3 || = \sqrt {0^2+0^2+1^2} = 1 \)
Calculate the inner product of each pair of vectors
\( \textbf {v}_1 \cdot \textbf {v}_2 = 0\cdot(-1) + 1\cdot0 + 0\cdot0 = 0 \)
\( \textbf {v}_1 \cdot \textbf {v}_3 = 0\cdot0 + 1\cdot0 + 0\cdot1 = 0 \)
\( \textbf {v}_2 \cdot \textbf {v}_3 = (-1)\cdot0 + 0\cdot0 + 0\cdot1 = 0 \)
The rows of \( Q \) form an orthonormal set of vectors.
Property 3
We have already calculated
\( Q^{-1} =
\begin{bmatrix}0&-1&0\\ 1&0&0\\ 0&0&1\end{bmatrix}
\)
We can easily check that the column vectors of \( Q^{-1} \) are the same as the row vectors \( \textbf {v}_1 , \textbf {v}_2 , \textbf {v}_3 \) already shown above (in property 2) that they form an orthonormal set. Hence \( Q^{-1} \) is an orthogonal matrix.
Property 4
Using the first row of \( Q \), we calculate the determinant as follows
Det \( (Q) = - 1 \cdot \text{Det} \begin{bmatrix} -1&0 \\ 0&1 \end{bmatrix} = 1 \)
Property 5
Find the eigenvalues of \( Q \) by solving the equation
\( \det \left\{ \:\begin{bmatrix}\:\:\:0\:\:&\:1\:&\:0\:\\ \:\:\:\:\:-1\:\:\:&\:0\:&\:0\:\\ \:\:\:\:\:0\:&\:0\:&\:1\end{bmatrix} - \lambda \:\begin{bmatrix}\:\:\:1\:\:&\:0\:&\:0\:\\ \:\:\:\:\:0\:\:\:&\:1\:&\:0\:\\ \:\:\:\:\:0\:&\:0\:&\:1\end{bmatrix} \right \} =0 \)
Simplify the left side of the above and rewrite as
\( \det \begin{bmatrix}-\lambda&1&0\\ -1&-\lambda&0\\ 0&0&1-\lambda\end{bmatrix} = 0 \)
Use the third row (it has 2 zeros)) to evaluate the determinant on the left side of the equation
\( (1 - \lambda) ( \lambda^2 + 1 ) = 0 \)
Solve the above equation to find all eigenvalues
\( \lambda_1 = 1 \) , \( \lambda_2 = i \) and \( \lambda_3 = - i \)
and we can now conclude that
\( |\lambda_1| = 1 \) , \( |\lambda_2| = 1 \) and \( |\lambda_3| = 1 \)
- Part 2
Matrices A and C are orthogonal but matrix B is not because its columns 2 and 3 are not orthogonal.
- Part 3
Two conditions must be satisfied for matrix \( A = \begin{bmatrix}
p & q\\
\dfrac{1}{\sqrt {3}} & r
\end{bmatrix} \) to be orthogonal.
1) The vectors formed by the column must be unit vectors (norm equal to 1). Hence
\( \sqrt {p^2 + \left(\dfrac{1}{\sqrt {3}}\right)^2} = 1 \) (I)
and
\( \sqrt {q^2 + r^2 } = 1 \) (II)
Solve equation (I) to obtain two solutions
\( p_1=\sqrt{\dfrac{2}{3}}\) and \( p_2=-\sqrt{\dfrac{2}{3}} \)
2) The two columns must be orthogonal which gives the equation
\( p q + \dfrac{r}{\sqrt {3}} = 0 \) (III)
Use the first solution \( p_1 \) to find \( q\) and \( r \)
Let \( p = \sqrt{\dfrac{2}{3}} \) and substitute in equation (III)
\( \sqrt{\dfrac{2}{3}} q + \dfrac{r}{\sqrt {3}} = 0 \)
which gives
\( q = - \dfrac{\sqrt{2}r}{2} \) (IV)
Substitute in equation (II) to obtain the equation
\( \sqrt { \left(- \dfrac{\sqrt{2}r}{2}\right)^2 + r^2 } = 1 \)
Solve the above to find
\( r_1 =\sqrt{\dfrac{2}{3}} \) and \( r_2 = -\sqrt{\dfrac{2}{3}} \)
Substitute in equation (IV) to obtain the corresponding values of \( q \)
\( q_1 = -\dfrac{\sqrt{3}}{3} \) and \( q_2 = \dfrac{\sqrt{3}}{3} \)
Use the second solution \( p_2 \) to find \( q\) and \( r \)
Let \( p = - \sqrt{\dfrac{2}{3}} \) and substitute in equation (III)
\( - \sqrt{\dfrac{2}{3}} q + \dfrac{r}{\sqrt {3}} = 0 \)
which gives
\( q = \dfrac{\sqrt{2}r}{2} \) (V)
Substitute in equation (II) to obtain the equation
\( \sqrt {\left(\dfrac{\sqrt{2}r}{2}\right)^2 + r^2 } = 1 \)
Solve the above to find
\( r_3 =\sqrt{\dfrac{2}{3}} \) and \( r_4 = -\sqrt{\dfrac{2}{3}} \)
Substitute in equation (IV) to obtain the corresponding values of \( q \)
\( q_3 = \dfrac{\sqrt{3}}{3} \) and \( q_4 = -\dfrac{\sqrt{3}}{3} \)
The matrices are
\(\begin{bmatrix}
\sqrt{\dfrac{2}{3}} & -\dfrac{\sqrt{3}}{3}\\
\dfrac{1}{\sqrt {3}} & \sqrt{\dfrac{2}{3}}
\end{bmatrix} \) ,
\(\begin{bmatrix}
\sqrt{\dfrac{2}{3}} & \dfrac{\sqrt{3}}{3}\\
\dfrac{1}{\sqrt {3}} & -\sqrt{\dfrac{2}{3}}
\end{bmatrix} \) ,
\(\begin{bmatrix}
- \sqrt{\dfrac{2}{3}} & \dfrac{\sqrt{3}}{3}\\
\dfrac{1}{\sqrt {3}} & \sqrt{\dfrac{2}{3}}
\end{bmatrix} \) ,
\(\begin{bmatrix}
- \sqrt{\dfrac{2}{3}} & -\dfrac{\sqrt{3}}{3}\\
\dfrac{1}{\sqrt {3}} & -\sqrt{\dfrac{2}{3}}
\end{bmatrix} \) ,
- Part 4
Given matrix \( A = \begin{bmatrix}
0 & \dfrac{5}{3 \sqrt 5} & \dfrac{2}{3} \\
\dfrac{1}{\sqrt 5} & - \dfrac{4}{3 \sqrt 5} & \dfrac{2}{3} \\
\dfrac{2}{\sqrt 5} & \dfrac{2}{3 \sqrt 5} & - \dfrac{1}{3}
\end{bmatrix} \)
Any of the known methods may be used to find the inverse of matrix \( A \). But a close examination of the matrix reveals that the matrix is orthogonal.
Let us prove that the given matrix is orthogonal.
Let \( \textbf v_1 , \textbf v_2 , \textbf v_3 \) be the columns of matrix \( A \) given above such that
\( \textbf {v}_1 = \begin{bmatrix}
0\\
\dfrac{1}{\sqrt 5} \\
\dfrac{2}{\sqrt 5}
\end{bmatrix} \) ,
\( \textbf {v}_2 = \begin{bmatrix}
\dfrac{5}{3 \sqrt 5}\\
- \dfrac{4}{3 \sqrt 5}\\
\dfrac{2}{3 \sqrt 5}
\end{bmatrix} \) ,
\( \textbf {v}_3 = \begin{bmatrix}
\dfrac{2}{3}\\
\dfrac{2}{3}\\
-\dfrac{1}{3}
\end{bmatrix} \)
Let us calculate the length or norm of each vector.
\( || \textbf {v}_1 || = \sqrt {0^2+ \left(\dfrac{1}{\sqrt 5} \right)^2+ \left(\dfrac{2}{\sqrt 5} \right)^2} = 1 \)
\( || \textbf {v}_2 || = \sqrt { \left(\dfrac{5}{3 \sqrt 5}\right)^2+ \left(- \dfrac{4}{3 \sqrt 5} \right)^2+ \left(\dfrac{2}{3 \sqrt 5} \right)^2} = 1 \)
\( || \textbf {v}_3 || = \sqrt { \left(\dfrac{2}{3} \right)^2+ \left(\dfrac{2}{3} \right)^2+ \left(-\dfrac{1}{3} \right)^2 } = 1 \)
All three vectors formed by the columns of the given matrix are unit vectors (norm or length = 1)
Calculate the inner product of all pairs of vectors that can be made from the vectors \( \textbf v_1 , \textbf v_2 , \textbf v_3 \)
\( \textbf {v}_1 \cdot \textbf {v}_2 = 0 \cdot \left(\dfrac{5}{3 \sqrt 5}\right) + \left(\dfrac{1}{\sqrt 5} \right) \cdot \left(- \dfrac{4}{3 \sqrt 5} \right) + \left(\dfrac{2}{\sqrt 5} \right) \cdot \left(\dfrac{2}{3 \sqrt 5} \right) = 0 \)
\( \textbf {v}_1 \cdot \textbf {v}_3 = 0 \cdot \left(\dfrac{2}{3}\right) + \left(\dfrac{1}{\sqrt 5} \right) \cdot \left(\dfrac{2}{3}\right) + \left(\dfrac{2}{\sqrt 5} \right) \cdot \left(-\dfrac{1}{3}\right) = 0 \)
\( \textbf {v}_2 \cdot \textbf {v}_3 = \left(\dfrac{5}{3 \sqrt 5}\right) \cdot \left(\dfrac{2}{3}\right) + \left(- \dfrac{4}{3 \sqrt 5} \right) \cdot \left(\dfrac{2}{3}\right) + \left(\dfrac{2}{3 \sqrt 5} \right) \cdot \left(-\dfrac{1}{3}\right) = 0 \)
The three vectors formed by the columns of the given matrix are orthogonal. Therefore the given matrix is orthogonal and we may the property \( A^{-1} = A^T \); hence the inverse of matrix \( A \) is given by the transpose of matrix \( A \).
\( A^{-1} =
\begin{bmatrix}
0 & \dfrac{1}{\sqrt 5} & \dfrac{2}{\sqrt 5} \\
\dfrac{5}{3 \sqrt 5} & - \dfrac{4}{3 \sqrt 5} & \dfrac{2}{3 \sqrt 5} \\
\dfrac{2}{3} & \dfrac{2}{3} & - \dfrac{1}{3}
\end{bmatrix}
\)
More References and links