Math Booklet of Formulas

www.analyzemath.com Free From

GREEK	ALPHABE	T
Conitol	Cmall	Nomo
	<u>Smail</u>	Alpha
A D	u e	Alpha
D T	р	Commo
1	Ŷ	Dolto
	0	Engilon
	E 7	Zota
	5	Zela Eta
П	η	Eld Thata
e	0	Ineta
I	ı	Iola
ĸ	ĸ	Kappa
Λ	λ	Lambda
M	μ	MU
N	v	Nu
Ξ	ξ	XI
0	0	Omicron
П	π	Pi
Р	ρ	Rho
Σ	σ	Sigma
Т	τ	Tau
Y	υ	Upsilon
Φ	φ	Phi
Х	χ	Chi
Ψ	Ψ	Psi
Ω	ω	Omega
ABBRE	/IATIONS	
Length		
In	inch	

In.	inch	
ft	foot	
yd	yard	
mile	mi	
mm	millimeter	
cm	centimeter	
dm	decimeter	
m	meter	
dam	decameter	
hm h	ectometer	
km	kilometer	
Volume		
pt	pint	
gal	gallon	
mL	milliliter	

cL	centiliter
dL	deciliter
L	liter
daL	dekaliter
hL	hectoliter
kL	kiloliter
сс	cubic centimeter
<u>Weight</u>	
mg	milligram
cg	centigram
dg	decigram
g	gram
dag	dekagram
hg	hectogram
kg	kilogram
pond	lb
ounce	OZ

RATES OF CONVERSION BETWEEN UNITS
<u>LENGTH</u>
1 mi = 5280 ft
1 mi = 1.609 km
1 mile = 1760 yd
1 in. = 2.54 cm
1 yd = 0.9144 m
1 yd = 3 ft
1 m = 3.281 ft
VOLUME / CAPACITY
1 mile squared = 640 acres
1 cubic foot = 7.481 gal
1 gal = 3.785 L
1 mL = 1cc

MASS / WEIGHT	
1 kg = 2.2 lb	
1 lb = 16 oz	

SUBSETS OF REAL NUMBERS
Natural Numbers $= \{1, 2, 3, 4,\}$
Whole Numbers = $\{0, 1, 2, 3, 4,\}$
Integers
$= \{, -3, -2, -1, 0, 1, 2, 3, 4,\}$
Rational
$= \{\frac{a}{b} \mid a \text{ and } b \text{ are int } egers\}$
with $a \neq 0$
Irrational = { $x \mid x \text{ in not rational}$ }

PROPERTIES OF REAL NUMBERS For all real numbers a, b and c we can write a+b=b+aThe addition is commutative

 $a \cdot b = b \cdot a$ The multiplication is commutative

(a+b) + c = a + (b+c)The addition is associative

 $(a \cdot b)c = a(b \cdot c)$ The multiplication is associative

a(b+c) = ab + acDistributive property of multiplication over addition

ORDER OF OPERATIONS	
First evaluate within the grouping symbols	
such as parentheses	
1.	Exponential expressions
2.	Multiplication and division
3.	Addition and subtraction

$$\frac{\text{ABSOLUTE VALUE}}{|x|} \begin{cases} x & \text{for } x \ge 0 \\ -x & \text{for } x < 0 \end{cases}$$

Math Booklet of Formulas

Free From www.analyzemath.com

EXPANDING - FACTORING FORMULAS

$$(x + y)^2 = x^2 + 2xy + y^2$$

 $(x - y)^2 = x^2 - 2xy + y^2$
 $(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$
 $(x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$
 $(x - y)(x + y) = x^2 - y^2$

SLOPE OF A LINE
• The slope
$$M$$
 of a line through the
points (x_1, y_1) and (x_2, y_2) is

given by
$$m = \frac{y_2 - y_1}{x_2 - x_1} \text{ when } x_1 \neq x_2$$

- The slope of a horizontal line is equal to zero.
- The slope of a vertical line is undefined.

$$\frac{\text{MIDPOINT AND DISTANCE FORMULAS}}{\text{The coordinates of the midpoint M of}} \\ \text{segment PQ where points P}(x_1, y_1) \text{ and} \\ Q(x_2, y_2) \text{ are given by} \\ M(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}) \\ \text{The distance d(PQ) between points P and} \\ Q \text{ is given by} \\ d(PQ) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ \hline \frac{\text{QUADRATIC FORMULA}}{\text{The solutions to the quadratic equation}} \\ ax^2 + bx + c = 0 \quad (a \neq 0) \text{ are given by} \\ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{If } b^2 - 4ac > 0, \text{ then there are two real solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If } b^2 - 4ac < 0, \text{ then there are two complex solutions.} \\ \text{If }$$

ARITHMETIC AND GEOMATRIC <u>SEQUENCES</u> The n th term of an arithmetic sequence with first term a_1 and common difference d is given by $a_n = a_1 + (n-1)d$ The sum S_n of the first n terms of an

arithmetic sequence is given by

$$S_n = \frac{n}{2}(a_1 + a_n)$$

The n th term of a geometric sequence with first term a_1 and common ratio r is given by

$$a_n = a_1 r^{n-1}$$

The sum S_n of the first n terms of a geometric sequence is given by

$$S_n = \frac{a_1(1-r^n)}{(1-r)}$$

The sum S of an infinite geometric sequence with |r| < 1 is given by

$$S = \frac{a_1}{(1-r)}$$

EXPONENTAILS AND LOGARITHMS

$$y = \log_b(x)$$
 if and only if $b^y = x$
 $\log_b(xy) = \log_b(x) + \log_b(y)$
 $\log_b(\frac{x}{y}) = \log_b(x) - \log_b(y)$
 $\log_b x^r = r \log_b(x)$
 $b^{\log_b(x)} = x$
 $\log_b(b^x) = x$
 $\log_b(b^x) = x$
 $\log_b(b) = 1$
 $\log_b(x) = \frac{\log_a(x)}{\log_a(b)}$

$$\frac{\text{BINOMIAL THEOREM}}{(x + y)^n = x^n + {}_nC_1 x^{n-1} y + {}_nC_2 x^{n-2} y^2 + \dots + {}_nC_r x^{n-r} y^r + \dots + y^n$$

$$+ \dots + y^n$$
Where ${}_nC_r = \frac{n!}{r!(n-r)!}$

$$\frac{\text{EXPONENTS AND RADICALS}}{x^0 = 1}$$

$$x^{-r} = \frac{1}{x^r} = (\frac{1}{x})^r$$

$$\frac{1}{x^{-r}} = x^r$$

$$x^r x^s = x^{r+s}$$

$$(x^r)^s = x^{rs}$$

$$(\frac{x}{y})^r = \frac{x^r}{y^r}$$

$$\frac{x^r}{y^s} = y^{r-s}$$

$$(xy)^r = x^r y^r$$

$$(\frac{x}{y})^{-r} = (\frac{y}{x})^r$$

$$x^{\frac{1}{n}} = \sqrt[n]{x}$$

$$\sqrt[n]{xy} = \sqrt[n]{x^n}\sqrt{y}$$

$$x^{\frac{1}{n}} = (\sqrt[n]{x})^n$$

$$\sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}$$

INEQUALITIES	
If $a > b$ and $b > c$ then $a > c$	
If $a > b$, then $a + c > b + c$	
If $a > b$ and $c > 0$, then $ac > bc$	
If $a > b$ and $c < 0$, then $ac < bc$	

Math Booklet of Formulas

Free From www.analyzemath.com

ABSOLUTE VALUE INEQUALITIES If $|x| \le b$ if and only if $-b \le x \le b$ If $|x| \ge b$ if and only if $x \ge b$ or $x \le -b$

LINEAR FUNCTION

Function f of the

form f(x) = ax + b with $a \neq 0$ is called a linear function because its graph is a line that has a slope equal to a and b is the y intercept of the line.

Domain: $(-\infty, +\infty)$

Range: $(-\infty, +\infty)$

QUADRATIC FUNCTIONFunction f of the form $f(x) = ax^2 + bx + c$ with $a \neq 0$ iscalled a quadratic function. Its graph is aparabola that has a vertex.The coordinates (h,k) of the vertex aregiven by $h = \frac{-b}{2a}$ and k = f(h)if a > 0, the graph opens upward and thevertex is a minimum point. The range of f isgiven by the interval $[k, +\infty)$

if a < 0, the graph opens downward and the vertex is a maximum point. The range of f is given by the interval $(-\infty, k]$

Domain of given by $(-\infty, +\infty)$

Function f may also be written in vertex form as follows

$$f(x) = a(x-h)^2 + k$$

 $\begin{array}{l} \hline \mbox{GROWTH AND DECAY EXPONENTIAL}\\ \hline \mbox{FUNCTIONS}\\ \hline \mbox{Assuming that } P \mbox{ is positive}\\ f(x) = Pe^{kx} \mbox{ is increasing if } k > 0 \ ,\\ \mbox{growth function.}\\ f(x) = Pe^{kx} \mbox{ is decreasing if } k < 0 \ ,\\ \mbox{decay function.} \end{array}$

COMPOUND INTEREST FORMULA If r is the rate of interest and the principal (the amount you begin with) *P* is compounded n times per year then after t years the total amount *A* is given by

$$A(t) = P(1 + \frac{r}{n})^{nt}$$

 $\frac{FRACTIONS AND RATIONAL}{EXPRESSIONS}$ $\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$ $\frac{a}{b} - \frac{c}{b} = \frac{a-c}{b}$ $\frac{a}{b} + \frac{c}{d} = \frac{ad+cb}{bd}$ $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ $\frac{a}{b} \cdot \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$ $\frac{ac}{bc} = \frac{a}{b}$

RECTANGULAR EQUATIONS FOR CONIC SECTIONS Circle of center (h, k) and radius r $(x-h)^{2} + (y-k)^{2} = r^{2}$ Ellipse of center (h, k) $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ Parabola of vertex (h, k) - Axis parallel to y axis $(x-h)^2 = 4p(y-k)$ Parabola of vertex (h, k) - Axis parallel to x axis $(y-k)^2 = 4p(x-h)$ Hyperbola of center (h, k) - Axis parallel to x axis $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ Hyperbola of center (h, k) - Axis parallel to y axis

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Free From www.analyzemath.com