Math Booklet of Formulas

Free From www.analyzemath.com

GREEK ALPHABET		
Capital	Small	Name
A	α	Alpha
B	β	Beta
Γ	γ	Gamma
Δ	δ	Delta
E	ε	Epsilon
Z	ζ	Zeta
H	η	Eta
Θ	θ	Theta
I	1	lota
K	κ	Kappa
Λ	λ	Lambda
M	μ	Mu
N	v	Nu
Ξ	ξ	Xi
O	o	Omicron
Π	π	Pi
P	ρ	Rho
Σ	σ	Sigma
T	τ	Tau
Y	v	Upsilon
Φ	φ	Phi
X	χ	Chi
Ψ	ψ	Psi
Ω	ω	Omega

ABBREVIATIONS	kg	kilogram
Length	pond	lb
In. inch	ounce	OZ

$\underline{\text { RATES OF CONVERSION BETWEEN }}$
$\underline{\text { LNITS }}$
$1 \mathrm{mi}=5280 \mathrm{ft}$
$1 \mathrm{mi}=1.609 \mathrm{~km}$
$1 \mathrm{mile}=1760 \mathrm{yd}$
$1 \mathrm{in} .=2.54 \mathrm{~cm}$
$1 \mathrm{yd}=0.9144 \mathrm{~m}$
$1 \mathrm{yd}=3 \mathrm{ft}$
$1 \mathrm{~m}=3.281 \mathrm{ft}$
$\underline{\text { VOLUME } / \mathrm{CAPACITY}}$
1 mile squared $=640$ acres
1 cubic foot $=7.481$ gal
$1 \mathrm{gal}=3.785 \mathrm{~L}$
$1 \mathrm{~mL}=1 \mathrm{cc}$

MASS / WEIGHT
$1 \mathrm{~kg}=2.2 \mathrm{lb}$
$1 \mathrm{lb}=16 \mathrm{oz}$

SUBSETS OF REAL NUMBERS

Natural Numbers $=\{1,2,3,4, \ldots\}$
Whole Numbers $=\{0,1,2,3,4, \ldots\}$
Integers
$=\{\ldots,-3,-2,-1,0,1,2,3,4, \ldots\}$
Rational
$=\left\{\left.\frac{a}{b} \right\rvert\, a\right.$ and b are int egers $\}$
with $a \neq 0$
|rrational $=\{x \mid x$ in not rational $\}$

PROPERTIES OF REAL NUMBERS

For all real numbers a, b and c we can write
$a+b=b+a$
The addition is commutative
$a \cdot b=b \cdot a$
The multiplication is commutative
$(a+b)+c=a+(b+c)$
The addition is associative
$(a \cdot b) c=a(b \cdot c)$
The multiplication is associative

$$
a(b+c)=a b+a c
$$

Distributive property of multiplication over addition

ORDER OF OPERATIONS

First evaluate within the grouping symbols such as parentheses

1. Exponential expressions
2. Multiplication and division
3. Addition and subtraction

ABSOLUTE VALUE

$$
|x|=\left\{\begin{array}{lr}
x & \text { for } x \geq 0 \\
-x & \text { for } x<0
\end{array}\right.
$$

Math Booklet of Formulas

Free From www.analyzemath.com

EXPANDING - FACTORING FORMULAS
$(x+y)^{2}=x^{2}+2 x y+y^{2}$
$(x-y)^{2}=x^{2}-2 x y+y^{2}$
$(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$
$(x-y)^{3}=x^{3}-3 x^{2} y+3 x y^{2}-y^{3}$
$(x-y)(x+y)=x^{2}-y^{2}$

SLOPE OF A LINE

- The slope m of a line through the
points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { when } x_{1} \neq x_{2}
$$

- The slope of a horizontal line is equal to zero.
- The slope of a vertical line is undefined.

MIDPOINT AND DISTANCE FORMULAS The coordinates of the midpoint M of segment PQ where points $\mathrm{P}\left(x_{1}, y_{1}\right)$ and
$\mathrm{Q}\left(x_{2}, y_{2}\right)$ are given by
$\mathrm{M}\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
The distance $d(P Q)$ between points P and Q is given by

$$
\mathrm{d}(\mathrm{PQ})=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

QUADRATIC FORMULA

The solutions to the quadratic equation
$a x^{2}+b x+c=0(a \neq 0)$ are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

If $b^{2}-4 a c>0$, then there are two real solutions.
If $b^{2}-4 a c=0$, then there is one real solutions
(or a repeated solution).
If $b^{2}-4 a c<0$, then there are two complex solutions.

ARITHMETIC AND GEOMATRIC

SEQUENCES
The n th term of an arithmetic sequence with first term a_{1} and common difference d is given by

$$
a_{n}=a_{1}+(n-1) d
$$

The sum S_{n} of the first n terms of an arithmetic sequence is given by

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

The n th term of a geometric sequence with first term a_{1} and common ratio r is given by

$$
a_{n}=a_{1} r^{n-1}
$$

The sum S_{n} of the first n terms of a geometric sequence is given by

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{(1-r)}
$$

The sum S of an infinite geometric sequence with $|r|<1$ is given by

$$
S=\frac{a_{1}}{(1-r)}
$$

EXPONENTAILS AND LOGARITHMS

$y=\log _{b}(x)$ if and only if $b^{y}=x$
$\log _{b}(x y)=\log _{b}(x)+\log _{b}(y)$
$\log _{b}\left(\frac{x}{y}\right)=\log _{b}(x)-\log _{b}(y)$
$\log _{b} x^{r}=r \log _{b}(x)$
$b^{\log _{b}(x)}=x$
$\log _{b}\left(b^{x}\right)=x$
$\log _{b}(1)=0$
$\log _{b}(b)=1$
$\log _{b}(x)=\frac{\log _{a}(x)}{\log _{a}(b)}$

BINOMIAL THEOREM

$$
\begin{aligned}
& (x+y)^{n}=x^{n}+{ }_{n} C_{1} x^{n-1} y+ \\
& { }_{n} C_{2} x^{n-2} y^{2}+\ldots+{ }_{n} C_{r} x^{n-r} y^{r} \\
& +\ldots+y^{n}
\end{aligned}
$$

Where ${ }_{n} C_{r}=\frac{n!}{r!(n-r)!}$

EXPONENTS AND RADICALS

$$
x^{0}=1
$$

$$
x^{-r}=\frac{1}{x^{r}}=\left(\frac{1}{x}\right)^{r}
$$

$$
\frac{1}{x^{-r}}=x^{r}
$$

$$
x^{r} x^{s}=x^{r+s}
$$

$$
\left(x^{r}\right)^{s}=x^{r s}
$$

$$
\left(\frac{x}{y}\right)^{r}=\frac{x^{r}}{y^{r}}
$$

$$
\frac{x^{r}}{y^{s}}=y^{r-s}
$$

$$
(x y)^{r}=x^{r} y^{r}
$$

$$
\left(\frac{x}{y}\right)^{-r}=\left(\frac{y}{x}\right)^{r}
$$

$$
x^{1 / n}=\sqrt[n]{x}
$$

$$
\sqrt[n]{x y}=\sqrt[n]{x} \sqrt[n]{y}
$$

$$
x^{n / m}=(\sqrt[m]{x})^{n}
$$

$$
\sqrt[n]{\frac{x}{y}}=\frac{\sqrt[n]{x}}{\sqrt[n]{y}}
$$

$$
\begin{aligned}
& \text { INEQUALITIES } \\
& \text { If } a>b \text { and } b>c \text { then } a>c \\
& \text { If } a>b \text {, then } a+c>b+c \\
& \text { If } a>b \text { and } c>0 \text {, then } a c>b c \\
& \text { If } a>b \text { and } c<0, \text { then } a c<b c
\end{aligned}
$$

Math Booklet of Formulas

Free From www.analyzemath.com

ABSOLUTE VALUE INEQUALITIES

If $|x| \leq b$ if and only if $-b \leq x \leq b$
If $|x| \geq b$ if and only if $x \geq b$ or $x \leq-b$

LINEAR FUNCTION

Function f of the
form $f(x)=a x+b$ with $a \neq 0$ is called a linear function because its graph is a line that has a slope equal to a and b is the y intercept of the line.

Domain: $(-\infty,+\infty)$

Range: $(-\infty,+\infty)$

QUADRATIC FUNCTION

Function f of the form
$f(x)=a x^{2}+b x+c$ with $a \neq 0$ is called a quadratic function. Its graph is a parabola that has a vertex.

The coordinates (h, k) of the vertex are given by

$$
h=\frac{-b}{2 a} \text { and } k=f(h)
$$

if $a>0$, the graph opens upward and the vertex is a minimum point. The range of f is given by the interval $[k,+\infty)$
if $a<0$, the graph opens downward and the vertex is a maximum point. The range of f is given by the interval $(-\infty, k]$

Domain of given by $(-\infty,+\infty)$
Function f may also be written in vertex form as follows

$$
f(x)=a(x-h)^{2}+k
$$

GROWTH AND DECAY EXPONENTIAL FUNCTIONS
Assuming that P is positive
$f(x)=P e^{k x}$ is increasing if $k>0$,
growth function.
$f(x)=P e^{k x}$ is decreasing if $k<0$, decay function.

COMPOUND INTEREST FORMULA
If r is the rate of interest and the principal (the amount you begin with) P is compounded n times per year then after t years the total amount A is given by

$$
A(t)=P\left(1+\frac{r}{n}\right)^{n t}
$$

FRACTIONS AND RATIONAL EXPRESSIONS
$\frac{a}{b}+\frac{c}{b}=\frac{a+c}{b}$
$\frac{a}{b}-\frac{c}{b}=\frac{a-c}{b}$
$\frac{a}{b}+\frac{c}{d}=\frac{a d+c b}{b d}$
$\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}$
$\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c}$
$\frac{a c}{b c}=\frac{a}{b}$

RECTANGULAR EQUATIONS FOR

 CONIC SECTIONSCircle of center (h, k) and radius r

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Ellipse of center (h, k)

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Parabola of vertex (h, k) - Axis parallel to y axis

$$
(x-h)^{2}=4 p(y-k)
$$

Parabola of vertex (h, k) - Axis parallel to x axis

$$
(y-k)^{2}=4 p(x-h)
$$

Hyperbola of center (h, k) - Axis parallel to x axis

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Hyperbola of center (h, k) - Axis parallel to y axis

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

