Solutions and Explanations to Grade 7 Fractions and Mixed Numbers Questions

Detailed solutions and full explanations to fractions and mixed numbers grade 7 problems are presented.

Note: Do not use the calculator to solve the questions below.

Solutions


  1. Find fraction \(F\) with denominator less than \(8\) such that \[ \frac{2}{8} + F = 1 \]

    Solution

    Solve for \(F\): \[ F = 1 - \frac{2}{8} \] \[ = \frac{8}{8} - \frac{2}{8} \quad \text{(common denominator)} \] \[ = \frac{6}{8} \quad \text{(subtract numerators)} \] \[ = \frac{3}{4} \quad \text{(reduce fraction)} \]

  2. Find two fractions \(F_1\) and \(F_2\) with same denominator equal to \(6\) such that \[ F_1 + F_2 = 1 \quad \text{and} \quad F_1 - F_2 = \frac{2}{3} \]

    Solution

    Write them with denominator \(6\): \[ F_1 + F_2 = 1 = \frac{6}{6} \] \[ F_1 - F_2 = \frac{2}{3} = \frac{4}{6} \] Their numerators must add to \(6\) and differ by \(4\), so: \[ F_1 = \frac{5}{6}, \quad F_2 = \frac{1}{6} \]

  3. Which fraction is equivalent to \(16\%\)?

    Solution

    \[ 16\% = \frac{16}{100} = \frac{4}{25} \]

  4. Which fraction is equivalent to \(\frac{300}{1000}\)?

    Solution

    \[ \frac{300}{1000} = \frac{3}{10} \quad \text{(divide numerator and denominator by 100)} \]

  5. \[ \frac{1}{2} + \frac{1}{5} + \frac{1}{6} \]

    Solution

    LCM of \(2, 5, 6\): \[ 2 = 2, \quad 5 = 5, \quad 6 = 2 \times 3 \] \[ \text{LCM} = 2 \times 5 \times 3 = 30 \] \[ \frac{1}{2} + \frac{1}{5} + \frac{1}{6} = \frac{15}{30} + \frac{6}{30} + \frac{5}{30} \] \[ = \frac{26}{30} = \frac{13}{15} \]

  6. \[ 3\frac{3}{5} + 5\frac{1}{2} \]

    Solution

    \[ (3 + 5) + \left( \frac{3}{5} + \frac{1}{2} \right) = 8 + \left( \frac{6}{10} + \frac{5}{10} \right) = 8 + \frac{11}{10} \] \[ = 8 + 1 + \frac{1}{10} = 9\frac{1}{10} \]

  7. \[ \frac{1}{7} \times 2\frac{2}{5} \]

    Solution

    \[ \frac{1}{7} \times \frac{12}{5} = \frac{12}{35} \]

  8. \[ \frac{1}{12} \times 0.2 \]

    Solution

    \[ 0.2 = \frac{1}{5} \] \[ \frac{1}{12} \times \frac{1}{5} = \frac{1}{60} \]

  9. \[ \frac{2}{5} \div 6 \]

    Solution

    \[ \frac{2}{5} \times \frac{1}{6} = \frac{2}{30} = \frac{1}{15} \]

  10. \[ \frac{9}{7} + 2 \]

    Solution

    \[ \frac{9}{7} + \frac{14}{7} = \frac{23}{7} = 3\frac{2}{7} \]

  11. \[ 2\frac{1}{3} + \frac{4}{2} \]

    Solution

    \[ \frac{4}{2} = 2 \] \[ 2\frac{1}{3} + 2 = 4\frac{1}{3} \]

  12. \[ 3\frac{1}{5} \div 5 \]

    Solution

    \[ \frac{16}{5} \div \frac{5}{1} = \frac{16}{5} \times \frac{1}{5} = \frac{16}{25} \]

  13. \[ \frac{1}{2} + 4\frac{1}{3} - 3\frac{2}{5} \]

    Solution

    \[ 4 - 3 + \frac{1}{2} + \frac{1}{3} - \frac{2}{5} \] \[ \text{LCM}(2,3,5) = 30 \] \[ = 1 + \left( \frac{15}{30} + \frac{10}{30} - \frac{12}{30} \right) = 1 + \frac{13}{30} = 1\frac{13}{30} \]

  14. \[ \frac{5}{2} \div \frac{7}{2} - \frac{1}{5} \]

    Solution

    \[ \frac{5}{2} \times \frac{2}{7} - \frac{1}{5} = \frac{5}{7} - \frac{1}{5} \] \[ = \frac{25}{35} - \frac{7}{35} = \frac{18}{35} \]

  15. \[ (0.2 + \frac{1}{5}) \times \frac{2}{7} \]

    Solution

    \[ 0.2 = \frac{1}{5} \] \[ \left( \frac{1}{5} + \frac{1}{5} \right) \times \frac{2}{7} = \frac{2}{5} \times \frac{2}{7} = \frac{4}{35} \]

  16. \[ \left( 3\frac{1}{2} + \frac{3}{5} \right) \times \frac{1}{7} \]

    Solution

    \[ \frac{7}{2} + \frac{3}{5} = \frac{35}{10} + \frac{6}{10} = \frac{41}{10} \] \[ \frac{41}{10} \times \frac{1}{7} = \frac{41}{70} \]

  17. \[ \frac{40}{4000} \]

    Solution

    \[ \frac{40}{4000} = \frac{1}{100} = 1\% \]

  18. \[ \left(\frac{1}{2} + \frac{2}{3}\right) \div 0.2 \]

    Solution

    First, add the fractions within the parentheses and convert the decimal $0.2$ to a fraction. \[ \left(\frac{1}{2} + \frac{2}{3}\right) \div 0.2 = \left(\frac{3}{6} + \frac{4}{6}\right) \div \frac{1}{5} = \frac{7}{6} \div \frac{1}{5} \] Next, to divide by a fraction, multiply by its reciprocal. \[ \frac{7}{6} \times \frac{5}{1} = \frac{35}{6} = 5\frac{5}{6} \]


  19. Order from least to greatest: \[ 3\frac{4}{7}, 3\frac{3}{5}, 3\frac{1}{2}, 3\frac{11}{20} \]

    Solution

    To compare the numbers, we find a common denominator for the fractional parts. The Least Common Multiple (LCM) of 7, 5, 2, and 20 is 140. We rewrite each number with this common denominator. \[ 3\frac{4}{7} = 3\frac{80}{140} \] \[ 3\frac{3}{5} = 3\frac{84}{140} \] \[ 3\frac{1}{2} = 3\frac{70}{140} \] \[ 3\frac{11}{20} = 3\frac{77}{140} \] By comparing the numerators of the fractional parts (\(70 \lt 77 \lt 80 \lt 84\)), we can order the numbers.

    The final order is: \[ 3\frac{1}{2}, 3\frac{11}{20}, 3\frac{4}{7}, 3\frac{3}{5}\]



  20. Order from least to greatest: \[ 2\frac{7}{8}, 2.66, 262\%, \frac{25}{8} \]

    Solution

    To compare these numbers, we convert them all to decimal form. \[ 2\frac{7}{8} = 2 + \frac{7}{8} = 2 + 0.875 = 2.875 \] \[ 2.66 = 2.66 \] \[ 262\% = \frac{262}{100} = 2.62 \] \[ \frac{25}{8} = 3.125 \] Comparing the decimal values (\(2.62 \lt 2.66 \lt 2.875 \lt 3.125\)), we can establish the order.

    The final order is: \[ 262\%, 2.66, 2\frac{7}{8}, \frac{25}{8} \]

Links and References