Negative Exponents Questions with Detailed Solutions for Grade 8

Detailed solutions and explanations to Grade 8 questions on simplifying expressions with negative exponents .

Review: Rules of Exponents

  1. Rule 1: \( (a \times b)^n = a^n \times b^n \)
  2. Rule 2: \( \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \)
  3. Rule 3: \( a^{-n} = \frac{1}{a^n} \)
  4. Rule 4: \( \left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n \)
  1. Simplify the expression \(5^{-2}\)

    Solution

    Using the negative exponent rule: \[ 5^{-2} = \frac{1}{5^2} = \frac{1}{25} \]
  2. Simplify the expression \(\left(-\frac{1}{3}\right)^{-2}\)

    Solution

    Rewrite as a product: \[ \left(-\frac{1}{3}\right)^{-2} = (-1)^{-2} \cdot \left(\frac{1}{3}\right)^{-2} \] Apply negative exponent rule: \[ = \frac{1}{(-1)^2} \cdot \left(\frac{3}{1}\right)^2 = 1 \cdot 9 = 9 \]
  3. Simplify \(\frac{5^{-1}}{3^{-1}}\)

    Solution

    Rewrite using quotient of powers: \[ \frac{5^{-1}}{3^{-1}} = \left(\frac{5}{3}\right)^{-1} = \frac{3}{5} \]
  4. Simplify \((2^{-3})(3^{-2})\)

    Solution

    Rewrite using negative exponent rule: \[ (2^{-3})(3^{-2}) = \frac{1}{2^3} \cdot \frac{1}{3^2} = \frac{1}{8} \cdot \frac{1}{9} = \frac{1}{72} \]
  5. Simplify \(-2^{-3}\)

    Solution

    Rewrite: \[ -2^{-3} = (-1) \cdot 2^{-3} = (-1) \cdot \frac{1}{2^3} = -\frac{1}{8} \]
  6. Simplify \(-1^{-3} + 2^{-3}\)

    Solution

    Rewrite: \[ -1^{-3} + 2^{-3} = (-1) \cdot \frac{1}{1^3} + \frac{1}{2^3} = -1 + \frac{1}{8} \] Find common denominator: \[ = -\frac{8}{8} + \frac{1}{8} = -\frac{7}{8} \]
  7. Simplify \((-1)^{-4} + 2^{-3}\)

    Solution

    Rewrite: \[ (-1)^{-4} + 2^{-3} = \frac{1}{(-1)^4} + \frac{1}{2^3} = 1 + \frac{1}{8} \] Find common denominator: \[ = \frac{8}{8} + \frac{1}{8} = \frac{9}{8} \]
  8. Simplify \(\left(-4^{-2}\right)(2^2)\)

    Solution

    Rewrite: \[ (-4^{-2})(2^2) = - \frac{1}{4^2} \cdot 2^2 = -\frac{1}{16} \cdot 4 = -\frac{1}{4} \]
  9. Simplify \((-1)^{-3} + 2^{0}\)

    Solution

    Note that \(2^0 = 1\). Rewrite: \[ (-1)^{-3} + 1 = \frac{1}{(-1)^3} + 1 = -1 + 1 = 0 \]
  10. Simplify \(0^{-3}\)

    Solution

    Rewrite: \[ 0^{-3} = \frac{1}{0^3} = \frac{1}{0} \] Division by zero is undefined, so \(0^{-3}\) is not a real number.

More References and Links