This tutorial explains how to graph polar equations by hand (sketching) in order to build a deep conceptual understanding. Several examples with detailed solutions are presented. Points in polar coordinates are written as \( (R, t) \), where \( R \) is the polar distance and \( t \) is the polar angle. The point-by-point method is used throughout.
Helpful references: Points in polar coordinates | Free polar graph paper
Graph the polar equation
\[ R = 4 \cos t \]and identify the graph.
| \( t \) | \( R \) |
|---|---|
| \( 0 \) | \( 4 \) |
| \( \frac{\pi}{6} \) | \( 3.5 \) |
| \( \frac{\pi}{4} \) | \( 2.8 \) |
| \( \frac{\pi}{3} \) | \( 2 \) |
| \( \frac{\pi}{2} \) | \( 0 \) |
| \( \frac{2\pi}{3} \) | \( -2 \) |
| \( \frac{3\pi}{4} \) | \( -2.8 \) |
| \( \frac{5\pi}{6} \) | \( -3.5 \) |
| \( \pi \) | \( -4 \) |
Graph the polar equation
\[ R = 2 + 2 \sin t \]and identify the graph.
| \( t \) | \( R \) |
|---|---|
| \( 0 \) | \( 2 \) |
| \( \frac{\pi}{6} \) | \( 3.0 \) |
| \( \frac{\pi}{4} \) | \( 3.4 \) |
| \( \frac{\pi}{3} \) | \( 3.7 \) |
| \( \frac{\pi}{2} \) | \( 4 \) |
| \( \frac{2\pi}{3} \) | \( 3.7 \) |
| \( \frac{3\pi}{4} \) | \( 3.4 \) |
| \( \frac{5\pi}{6} \) | \( 3 \) |
| \( \pi \) | \( 2 \) |
| \( \frac{7\pi}{6} \) | \( 1 \) |
| \( \frac{5\pi}{4} \) | \( 0.6 \) |
| \( \frac{4\pi}{3} \) | \( 0.3 \) |
| \( \frac{3\pi}{2} \) | \( 0 \) |
Graph the polar equation
\[ R = 4 \cos(2t) \]and identify the graph.
| \( t \) | \( R \) |
|---|---|
| \( 0 \) | \( 4 \) |
| \( \frac{\pi}{6} \) | \( 2 \) |
| \( \frac{\pi}{4} \) | \( 0 \) |
| \( \frac{\pi}{3} \) | \( -2 \) |
| \( \frac{\pi}{2} \) | \( -4 \) |
| \( \frac{2\pi}{3} \) | \( -2 \) |
| \( \frac{3\pi}{4} \) | \( 0 \) |
| \( \frac{5\pi}{6} \) | \( 2 \) |
| \( \pi \) | \( 4 \) |