Introduction to Polynomials
A polynomial is an expression made up by adding and subtracting monomials.
MonomialsWe start by defining a monomial as a term of the formExamples of Monomials1. 2 x 22. - 3 x 3. (1 / 2) x 7
BinomialsWe now define a binomial as a sum of 2 monomials that are not like.Examples of Binomials2 x + 8 , - x3 + 3 x , (1/2) x2 - xA trinomial as a sum of 3 monomials that are not like. Examples: 2 x3 + 8 x - 2 , 3 x4 - 5 x - 9 , 0.2 x2 - x + 4 PolynomialsA polynomial in x is the sum of any number of monomials and has the following formwhere the coefficients ak are constant. If coefficient an is not equal to 0, then n (the highest power) is the degree of the polynomial and an is the leading coefficient. Examples of Polynomials1. -2 x3 + 4 x2 - 9 x + 12 , leading coefficient -2 and degree 3.2. ( 1 /3) x5 - x3 - 9 x2 , leading coefficient 1 / 3 and degree 5.
Equal PolynomialsTwo polynomials are equal if their corresponding coefficients are all equal.Example: For what values of a, b and c are the polynomials - x2 + 4 x - 9 and a x2 + b x2 + c Answer: a = - 1 , b = 4 and c = -9 More References and Links to Polynomial FunctionsPolynomial Functions |