Solutions to Algebra Placement Test Practice

Solutions with explanations to algebra placement test practice.

  1. Solution

    Given expression: \[ \frac{a^3 - 1}{b - 1} \] Substitute \(a = -2\) and \(b = -2\): \[ \frac{(-2)^3 - 1}{(-2) - 1} \] Simplify: \[ \frac{-8 - 1}{-2 - 1} = \frac{-9}{-3} = 3 \]
  2. Solution

    Given equation: \[ -2(x + 9) = 20 \] Expand: \[ -2x - 18 = 20 \] \[ -2x = 38 \] Multiply both sides by \(2\): \[ -4x = 76 \]
  3. Solution

    Let \(x\) be the unknown. 20% of \(x\): \[ 0.2x \] The fifth of \(x\): \[ \frac{1}{5}x = 0.2x \] "20% of it is added to its fifth": \[ 0.2x + 0.2x \] Seven-tenths of \(x\): \[ \frac{7}{10}x = 0.7x \] Statement: \[ 0.2x + 0.2x = 0.7x - 12 \] Simplify: \[ 0.4x = 0.7x - 12 \] \[ 12 = 0.3x \] \[ x = 40 \]
  4. Solution

    Given formula: \[ A = 0.5(b + B)h \] Divide both sides by \(0.5h\): \[ \frac{A}{0.5h} = b + B \] Solve for \(B\): \[ B = \frac{A}{0.5h} - b \] Since \(\frac{1}{0.5} = 2\): \[ B = \frac{2A}{h} - b \]
  5. Solution

    Let \(x\) be the amount Tom has. Alex has: \[ \frac{x}{3} \] Linda has twice Alex’s amount: \[ \frac{2x}{3} \] Total: \[ x + \frac{x}{3} + \frac{2x}{3} = 120 \] Multiply by 3: \[ 3x + x + 2x = 360 \] \[ 6x = 360 \quad \Rightarrow \quad x = 60 \] Linda has: \[ \frac{2}{3} \cdot 60 = 40 \]
  6. Solution

    Factorize: \[ 6x^2 - 11x - 2 \] Try: \[ (6x - 1)(x + 2) \quad \Rightarrow \quad 6x^2 + 11x - 2 \ (\text{incorrect}) \] Try: \[ (6x + 1)(x - 2) \quad \Rightarrow \quad 6x^2 - 11x - 2 \ (\text{correct}) \]
  7. Solution

    Factor: \[ x^2 - 7x - 8 = (x + 1)(x - 8) \] One factor is \(x + 1\).
  8. Solution

    Simplify: \[ (2xy^2 - 3x^2y) - (2x^2y^2 - 4x^2y) \] Remove parentheses: \[ 2xy^2 - 3x^2y - 2x^2y^2 + 4x^2y \] Group like terms: \[ 2xy^2 - 2x^2y^2 + x^2y \]
  9. Solution

    Average speed formula: \[ \text{Speed} = \frac{\text{Distance}}{\text{Time}} \] Given speed \(= 70\) mph, total time \(= 5\) hours: \[ \frac{x + 200}{5} = 70 \] \[ x + 200 = 350 \] \[ x = 150 \]
  10. Solution

    Rewrite in slope-intercept form: (I) \(y = -\frac{3}{2}x + \frac{3}{2}\) (II) \(y = -\frac{2}{3}x - \frac{5}{3}\) (III) \(y = \frac{2}{3}x - \frac{3}{2}\) (IV) \(y = -3x + \frac{9}{2}\) Slopes: (I) \(-\frac{3}{2}\), (II) \(-\frac{2}{3}\), (III) \(\frac{2}{3}\), (IV) \(-3\). Two lines are perpendicular if \(m \cdot n = -1\). For (I) and (III): \[ \left(-\frac{3}{2}\right) \cdot \left(\frac{2}{3}\right) = -1 \] Hence, (I) and (III) are perpendicular.
  11. Solution

    Given: \[ f(x) = (x + 1)^2 \] Substitute \(x = t + 2\): \[ f(t + 2) = (t + 3)^2 \] Expand: \[ t^2 + 6t + 9 \]
  12. Solution

    Simplify: \[ (\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y}) - (\sqrt{x} - \sqrt{y})^2 \] First term: \[ (\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y}) = x - y \] Second term: \[ (\sqrt{x} - \sqrt{y})^2 = x + y - 2\sqrt{xy} \] Subtract: \[ (x - y) - (x + y - 2\sqrt{xy}) = -2y + 2\sqrt{xy} \]
  13. Solution

    Given: \[ \frac{x}{2} - \frac{y}{4} = 7 \] Multiply by 4: \[ 2x - y = 28 \] \[ y = 2x - 28 \] Slope \(= 2\).
  14. Solution

    Simplify: \[ \left( \frac{x}{x - 3} + \frac{1}{2} \right) \cdot \frac{2}{x - 1} \] Combine inside parentheses: \[ \frac{2x}{2(x - 3)} + \frac{x - 3}{2(x - 3)} = \frac{3x - 3}{2(x - 3)} \] Multiply by \(\frac{2}{x - 1}\): \[ \frac{3x - 3}{2(x - 3)} \cdot \frac{2}{x - 1} = \frac{3(x - 1)}{x - 3} \cdot \frac{1}{x - 1} = \frac{3}{x - 3} \]
  15. Solution

    Point \(A(2,1)\), midpoint \(M(3,2)\), point \(B(a,b)\). Midpoint formula: \[ \left( \frac{2 + a}{2}, \frac{1 + b}{2} \right) = (3,2) \] From \(x\)-coordinate: \[ \frac{2 + a}{2} = 3 \quad \Rightarrow \quad a = 4 \] From \(y\)-coordinate: \[ \frac{1 + b}{2} = 2 \quad \Rightarrow \quad b = 3 \]

More References and Links