Fractions - Grade 5 Maths Questions With Solutions
\( \)\( \)\( \)
Grade 5 maths multiple choice questions on fractions with answers are presented. Also Solutions and explanations are included.
Note that mixed numbers are written as follows: whole part followed by a proper fraction.
For example: \( 5 \dfrac{1}{2} \) is a mixed number meaning \( 5 +\dfrac{1}{2} \).
More resources on fractions are included.
Questions
-
Write \( 1 \) as a fraction.
- \( \dfrac{1}{1} \) only
- \( \dfrac{2}{2} \) only
- \( \dfrac{3}{3} \) only
- Any fraction of the form \(\dfrac{n}{n} \) where \( n \) is a whole number
-
Write 5 as a reduced fraction.
- \( \dfrac{5}{5} \)
- \( \dfrac{1}{5} \)
- \( \dfrac{5}{1} \)
- \( \dfrac{1}{1} \)
-
\[ \dfrac{1}{4} + \dfrac{2}{4} = \]
- \( \dfrac{3}{4} \)
- \( \dfrac{3}{8} \)
- \( \dfrac{7}{8} \)
- \( 3 \)
-
\[ \dfrac{4}{7} - \dfrac{2}{7} = \]
- \( \dfrac{2}{14} \)
- \( \dfrac{6}{7} \)
- \( \dfrac{2}{7} \)
- \( \dfrac{4}{7} \)
-
\[ \dfrac{1}{5} + \dfrac{2}{3} = \]
- \( \dfrac{3}{8} \)
- \( \dfrac{2}{15} \)
- \( \dfrac{1}{8} \)
- \( \dfrac{13}{15} \)
-
\[ 3 \dfrac{1}{2} + 5 \dfrac{1}{3} \]
- \( 8 \)
- \( 8 \dfrac{2}{5} \)
- \( 8 \dfrac{5}{6} \)
- \( \dfrac{2}{5} \)
-
It takes Julia \( \dfrac{1}{2} \) hour to wash, comb her hair and put on her clothes, and \( \dfrac{1}{4} \) hour to have her breakfast. How much time does it take Julia to be ready for school?
- \( \dfrac{3}{4} \) hour
- 1 hour
- \( \dfrac{2}{4} \) hour
- 1 and \( \dfrac{1}{4} \) hours
-
Which two fractions are equivalent?
- \( \dfrac{5}{2} \) and \( \dfrac{2}{5} \)
- \( \dfrac{4}{3} \) and \( \dfrac{8}{6} \)
- \( \dfrac{1}{4} \) and \( \dfrac{2}{4} \)
- \( \dfrac{2}{3} \) and \( \dfrac{1}{3} \)
-
\[ 5 \dfrac{2}{3} - 3 \dfrac{1}{2} = \]
- \( 2 \)
- \( 1 \dfrac{2}{5} \)
- \( 2 \dfrac{7}{6} \)
- \( 2 \dfrac{1}{6} \)
-
Billy ate 1 and \( \dfrac{1}{4} \) of pizzas and John ate 1 and \( \dfrac{2}{3} \) pizzas. How much more pizza did John eat than Billy?
- \( \dfrac{2}{3} \)
- \( \dfrac{5}{12} \)
- \( \dfrac{1}{4} \)
- \( \dfrac{7}{12} \)
-
\[ \dfrac{5}{2} \div \dfrac{3}{4} \]
- \( \dfrac{10}{3} \)
- \( \dfrac{10}{8} \)
- \( \dfrac{13}{4} \)
- \( 1 \)
-
\[ 5 \div \dfrac{1}{7} \]- \( \dfrac{5}{7} \)
- \( \dfrac{6}{7} \)
- \( \dfrac{1}{35} \)
- \( 35 \)
-
\[ \dfrac{2}{5} \times \dfrac{3}{7} \]
- \( \dfrac{14}{15} \)
- \( \dfrac{6}{35} \)
- \( \dfrac{35}{6} \)
- \( \dfrac{15}{14} \)
-
To have \( a + 1 \dfrac {3}{4} = 2 \) , \( a \) must be equal to
- \( 1 \)
- \( \dfrac{3}{4}\)
- \( \dfrac{1}{2} \)
- \( \dfrac{1}{4} \)
-
What fraction or mixed number is the shaded part?
.
- \( \dfrac{3}{4} \)
- \( \dfrac{6}{4} \)
- \( 2 \dfrac{3}{4} \)
- \( 1 \dfrac{3}{4} \)
-
True or false \[ 2 \dfrac{1}{2} = 2 \times \dfrac{1}{2} \] Solution -
Tina works 15 hours a week (Monday to Friday). Last week she worked 3 and 1/2 hours on Monday, 4 hours on Tuesday, 2 and 1/6 hours on Wednesday and 1 and 1/2 hours on Thursday. How many hours did she work on Friday?
- \( 4 \)
- \( \dfrac{5}{6} \)
- \( 3 \dfrac{5}{6} \)
- \( 2 \dfrac{5}{6} \)
-
Which point on the number line represents \( 1 \dfrac{7}{10} \)?
.
- s
- R
- W
- K
-
Write \( 2 \dfrac{1}{3} \) as an improper fraction.
- \( \dfrac{2}{3} \)
- \( \dfrac{7}{3} \)
- \( \dfrac{1}{3} \)
- \( \dfrac{3}{3} \)
-
Write the fraction \( \dfrac{31}{8} \) as a mixed number.
- \( 4 \)
- \( 4 \dfrac{7}{8} \)
- \( 3 \dfrac{1}{8} \)
- \( 3 \dfrac{7}{8} \)
-
\[ 3 \times \dfrac{1}{4} = \]
- \( 3 \dfrac{1}{4} \)
- \( \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} \)
- \( \dfrac{1}{4} \)
- \( 12 \)
-
\[ 3 \dfrac{1}{4} = \]
- \( 3 \times \dfrac{1}{4} \)
- \( \dfrac{3}{4} \)
- \( 3 + \dfrac{1}{4} \)
- \( \dfrac{4}{3} \)
-
True or false \[ \dfrac{2}{5} \gt \dfrac{3}{8} \] Solution
-
Order from least to greatest the fractions \[ \dfrac{3}{5} \; , \; \dfrac{7}{6} \; , \; \dfrac{1}{3} \; , \; \dfrac{4}{9} \]
- \( \dfrac{1}{3} \; , \; \dfrac{4}{9} \; , \; \dfrac{3}{5} \; , \; \dfrac{7}{6} \)
- \( \dfrac{4}{9} \; , \; \dfrac{1}{3} \; , \; \dfrac{3}{5} \; , \; \dfrac{7}{6} \)
- \( \dfrac{1}{3} \; , \; \dfrac{4}{9} \; , \; \dfrac{7}{6} \; , \; \dfrac{3}{5} \)
- \( \dfrac{1}{3} \; , \; \dfrac{3}{5} \; , \; \dfrac{4}{9} \; , \; \dfrac{7}{6} \)
-
Write \( \dfrac{2}{3} \) of \( 4 \) as a mixed number.
- \( 4 \dfrac{2}{3} \)
- \( 1 \dfrac{2}{3} \)
- \( 2 \dfrac{2}{3} \)
- \( \dfrac{8}{3} \)
-
How many minutes are there in \( \dfrac{2}{3} \) of an hour?
- 40 minutes
- 60 minutes
- 20 minutes
- 100 minutes
-
In the figure below, a large square was divided into 16 smaller squares of equal sides.
What fraction of the large square is red?
What fraction of the large square is blue?
What fraction of the large square is orange?
What fraction of the large square is green?
What fraction of the large square is black?
What fraction of the large square is yellow?
.
- red: \( \dfrac{1}{4} \) , blue: \( \dfrac{1}{16} \) , orange: \( \dfrac{1}{16} \), green: \( \dfrac{3}{16} \), black: \( \dfrac{3}{16} \), yellow: \( \dfrac{3}{16} \)
- red: \( \dfrac{4}{4} \) , blue: \( \dfrac{1}{16} \) , orange: \( \dfrac{1}{16} \) , green:\( \dfrac{3}{32} \) , black: \( \dfrac{3}{16} \) , yellow: \( \dfrac{3}{16} \)
- red: \( \dfrac{1}{4} \) , blue: \( \dfrac{1}{16} \) , orange: \( \dfrac{1}{16} \) , green: \( \dfrac{3}{16} \) , black: \( \dfrac{3}{16} \) , yellow: \( \dfrac{3}{16} \)
- red: \( \dfrac{1}{4} \) , blue: \( \dfrac{1}{16} \) , orange: \( \dfrac{1}{32} \) , green: \( \dfrac{3}{32} \) , black: \( \dfrac{3}{16} \) , yellow: \( \dfrac{3}{16} \)
Answers to the Above Questions
- D
- C
- A
- C
- D
- C
- A
- B
- D
- B
- A
- D
- B
- D
- C
- false
- C
- C
- B
- D
- B
- C
- True
- A
- C
- A
- D
More References and links
More resources on fractions are included.
Primary Maths (grades 4 and 5) with Free Questions and Problems With Answers
Middle School Maths (grades 6,7,8 and 9) with Free Questions and Problems With Answers
High School Maths (Grades 10, 11 and 12) - Free Questions and Problems With Answers
Home Page