# Convert Mixed Numbers to Fractions

Examples and Questions with Answers (Grade 5)

\(\)\(\)\(\)\(\)
Grade 5 questions on how to convert mixed numbers to fractions with answers are presented.

## Example

Convert the mixed number
\[
5 \dfrac{3}{4}
\]
into a fraction.
### Solution

To convert a mixed number into a fraction, follow the steps:

__Step 1:__ Write the mixed number as a sum of a whole number and a fraction.
\[
5 \dfrac{3}{4} = 5 + \dfrac{3}{4}
\]
__Step 2:__ Write the whole number (5 in this example) as a fraction with
denominator equal to 1.
\[
= \dfrac{5}{1} + \dfrac{3}{4}
\]
__Step 3:__ Write the fraction \( \dfrac{5}{1} \) with the denominator \( 4 \) by multiplying numerator and denominator by \( 4 \).
\[
= \dfrac{5 \times 4}{1 \times 4} + \dfrac{3}{4}
\]
__Step 4:__ Simplify \( \dfrac{5 \times 4}{1 \times 4} \).
\[
= \dfrac{20}{4} + \dfrac{3}{4}
\]
__Step 5:__ Add the two fractions.
\[
= \dfrac{23}{4}
\]

## Questions with answers

Write the following mixed numbers as fractions.

\(
6 \dfrac{3}{5}
\)

\(
1 \dfrac{1}{10}
\)

\(
7 \dfrac{3}{7}
\)

\(
102 \dfrac{1}{2}
\)

## Answers to above questions

\(
6 \dfrac{3}{5} = 6 + \dfrac{3}{5} = \dfrac{6 \times 5}{1 \times 5} + \dfrac{3}{5} = \dfrac{30}{5} + \dfrac{3}{5} = \dfrac{33}{5}
\)

\(
1 \dfrac{1}{10} = 1 + \dfrac{1}{10} = \dfrac{1 \times 10}{ 1\times 10} + \dfrac{1}{10} = \dfrac{10}{10} + \dfrac{1}{10} = \dfrac{11}{10}
\)

\(
7 \dfrac{3}{7} = 7 + \dfrac{3}{7} = \dfrac{7 \times 7}{ 1\times 7} + \dfrac{3}{7} = \dfrac{49}{7} + + \dfrac{3}{7} = \dfrac{52}{7}
\)

\(
102 \dfrac{1}{2} = 102 + \dfrac{1}{2} = \dfrac{102 \times 2}{ 1\times 2} + \dfrac{1}{2} = \dfrac{204}{2} + \dfrac{1}{2} = \dfrac{205}{2}
\)