Convert Mixed Numbers to Fractions
Examples and Questions with Answers (Grade 5)

\(\)\(\)\(\)\(\)

Grade 5 questions on how to convert mixed numbers to fractions with answers are presented.

Example

Convert the mixed number \[ 5 \dfrac{3}{4} \] into a fraction.

Solution

To convert a mixed number into a fraction, follow the steps:
Step 1: Write the mixed number as a sum of a whole number and a fraction. \[ 5 \dfrac{3}{4} = 5 + \dfrac{3}{4} \] Step 2: Write the whole number (5 in this example) as a fraction with denominator equal to 1. \[ = \dfrac{5}{1} + \dfrac{3}{4} \] Step 3: Write the fraction \( \dfrac{5}{1} \) with the denominator \( 4 \) by multiplying numerator and denominator by \( 4 \). \[ = \dfrac{5 \times 4}{1 \times 4} + \dfrac{3}{4} \] Step 4: Simplify \( \dfrac{5 \times 4}{1 \times 4} \). \[ = \dfrac{20}{4} + \dfrac{3}{4} \] Step 5: Add the two fractions. \[ = \dfrac{23}{4} \]

Questions with answers

Write the following mixed numbers as fractions.

  1. \( 6 \dfrac{3}{5} \)

  2. \( 1 \dfrac{1}{10} \)

  3. \( 7 \dfrac{3}{7} \)

  4. \( 102 \dfrac{1}{2} \)

Answers to above questions


  1. \( 6 \dfrac{3}{5} = 6 + \dfrac{3}{5} = \dfrac{6 \times 5}{1 \times 5} + \dfrac{3}{5} = \dfrac{30}{5} + \dfrac{3}{5} = \dfrac{33}{5} \)

  2. \( 1 \dfrac{1}{10} = 1 + \dfrac{1}{10} = \dfrac{1 \times 10}{ 1\times 10} + \dfrac{1}{10} = \dfrac{10}{10} + \dfrac{1}{10} = \dfrac{11}{10} \)

  3. \( 7 \dfrac{3}{7} = 7 + \dfrac{3}{7} = \dfrac{7 \times 7}{ 1\times 7} + \dfrac{3}{7} = \dfrac{49}{7} + + \dfrac{3}{7} = \dfrac{52}{7} \)

  4. \( 102 \dfrac{1}{2} = 102 + \dfrac{1}{2} = \dfrac{102 \times 2}{ 1\times 2} + \dfrac{1}{2} = \dfrac{204}{2} + \dfrac{1}{2} = \dfrac{205}{2} \)

References and Links