Se presenta una calculadora gratuita en línea, que muestra todos los pasos, para calcular el ángulo \( \alpha \) entre dos planos.
El plano (1) y el plano (2) tienen las siguientes ecuaciones
\( \quad a_1 x + b_1 y + c_1 + d_1 = 0 \) y
\( \quad a_2 x + b_2 y + c_2 + d_2 = 0 \), respectivamente.
Los vectores \( \vec {n_1} \) y \( \vec {n_2} \), normales a los planos (1) y (2) definidos por las ecuaciones anteriores,
están dados por sus componentes como:
\( \vec {n_1} = \lt a_1 , b_1 , c_1 \gt \)
\( \vec {n_2} = \lt a_2 , b_2 , c_2 \gt \)
El ángulo \( \alpha \) entre los dos planos es igual al
ángulo entre los vectores
\( \vec {n_1} \) y \( \vec {n_2} \), y su coseno está dado por
\[ \large \color{red} {\cos \alpha = \dfrac{ \vec {n_1} \cdot \vec {n_2} }{| \vec {n_1} | \cdot | \vec {n_2} | } =
\dfrac{a_1 \cdot a_2 + b_1 \cdot b_2 + c_1 \cdot c_2 }{| \vec {n_1} | \cdot | \vec {n_2} | } } \]
Las magnitudes \( | \vec {n_1} | \) y \( | \vec {n_2} | \) están dadas por
\( | \vec {n_1} | = \sqrt {a_1^2 + b_1^2 + c_1^2 } \)
\( | \vec {n_2} | = \sqrt {a_2^2 + b_2^2 + c_2^2 } \)
Utilice la función arco coseno para expresar el ángulo \( \alpha \) formado por los dos vectores como
\[ \large \color{red} {\alpha = \arccos \left (
\dfrac{ a_1 \cdot a_2 + b_1 \cdot b_2 + c_1 \cdot c_2 }
{\sqrt {a_1^2 + b_1^2 + c_1^2 } \cdot \sqrt {a_2^2 + b_2^2 + c_2^2} }
\right) } \]
Ingrese los coeficientes \( a_1 \), \( b_1 \) y \( c_1 \) del plano (1), y los coeficientes \( a_2 \), \( b_2 \) y \( c_2 \) del plano (2), y presione “Calcular”. Los resultados son las magnitudes \( | \vec {n_1} | \) y \( | \vec {n_2} | \), el producto punto \( \vec {n_1} \cdot \vec {n_2} \) y el ángulo \( \alpha \). También puede ingresar el número de decimales requeridos.